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Porous materials are often used for the injector face plate of liquid propellant rocket
engines (LPRE). To develop predictive capabilities for such porous media fuel flow
problems, a multi-scale modeling strategy is developed. The effect of porous structure on the
macroscopic fluid flow is accounted for via local volume averaged governing equations. The
resulting set of transport equations, at the global domain level, contains closure terms
representing the statistical flow characteristics around the pores. Conventionally, the closure
terms are evaluated using empirical correlations. In the present approach, these closure
terms in the global fluid flow equations are deduced via direct computation of the fluid flow
in individual, representative pores. Hence, empirical dependence of simulations can be
removed without requiring excessive computational cost. The performance of the present
approach is demonstrated by studying isothermal fluid flow through a porous plate with an
array of uniformly drilled holes. As a preliminary step towards multi-scale closure of the
energy equation, a global scale heat transfer analysis case is also conducted to illustrate the
scope of the entire theoretical framework.

Nomenclature
A = cross-sectional area

sfA = solid-fluid interfacial area

EC = Ergun coefficient

fC = skin friction coefficient

pc = specific heat
d
ijD = dispersion tensor

Da = Darcy number

ijδ = Kronecker delta

ε = porosity
Fτ = net skin friction force

H = channel height
K = permeability
L = channel length

fk = fluid phase thermal conductivity

sk = solid phase thermal conductivity
e
ijK = effective thermal conductivity tensor
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m& = mass flow rate
µ = dynamic viscosity

in = surface normal vector

p = pressure

ip = inlet pressure

ep = exit pressure

EP∆ = Experimental measurement of pressure drop across the plate

CP∆ = Computed pressure drop across the plate with K and EC estimated from pore scale analysis

/C KE
P P∆ ∆ = Proportion of pressure drops due to inertial and Darcian terms

ρ = fluid density

Re = Reynolds number
Red = Reynolds number based on pore diameter

Re
K

= Reynolds number based on permeability

Sij = strain rate tensor

Tij = stress tensor

T = temperature

wθ = dimensionless wall temperature

Du = filter velocity

iu = velocity vector

eU = exit velocity

Vf = volume of the fluid phase

V = total volume

I. Introduction
Porous materials are often used for the injector face plate of liquid propellant rocket engines (LPRE). Fuel bleeds 
through the porous plate to aid in cooling of the injector face by transpiration while helping injection of fuel at the
same time. For example, in P&W’s RL10 engine and Space Shuttle Main Engine (SSME), RigimeshTM is used. It is
formed by pressing layers of sintered stainless steel wire meshes (see Figure 1). In the case of SSME, a 0.25” thick
plate with about 9% void space is used. Rigimesh can qualitatively be classified as a dense, non-uniform, fibrous
porous media.

In such porous fluid flow problems, direct numerical simulation of the fluid flow accounting for all geometric
details is very costly if not impossible. Thus modeling efforts in this area dating back to Darcy’s experimental study
in 1856, have mostly aimed at correlating the pore level flow effects to the bulk fluid motion. Conventionally, the
closure terms have been evaluated using empirical correlations. The most commonly used approach is to add source
terms to the global transport equation of mass, momentum and energy. The source terms are largely based on those

Figure 1. Rigimesh material
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proposed by Darcy1 and Ergun3, via two parameters, namely, permeability, K , and the Ergun coefficient, EC .

These parameters are generally determined via empirical correlations (See Ref. 11).
To develop predictive capabilities for such porous media flow problems, a first principle-based, multi-scale

modeling strategy is developed. The effect of porous media on the macroscopic fluid flow structures is accounted
for via local volume averaged governing equations. The resulting set of transport equations, at the global domain
level, contains closure terms representing the statistical flow characteristics around the pores. Our approach is based
on the local volume averaging method. This method follows the notion of investigating the flow properties averaged
over local volume elements and produces an unclosed set of governing equations. Most porous media can be thought
of as a matrix of repeating pore patterns. We can calculate the closure terms for different flow speeds and pore
patterns observed. These results can be interpolated to obtain the closure term evaluations throughout the porous
medium. Thus, we can avoid the computational cost of direct simulation yet we can produce accurate numerical
predictions completely free of empiricism. In the present approach, these closure terms in the global fluid flow
equations are deduced via direct computation of the fluid flow in individual, representative pores.

In the following sections, we first briefly review the theoretical background followed by detailed derivations of
local volume averaged governing equations. We then explain the conventional and multi-scale closure
methodologies. Although our ultimate objective in this study is to develop a method to accurately simulate the fluid
flow and heat transfer through the RigimeshTM material, we first examine our methodology for a simpler porous
medium with well defined pore geometry. The performance of the present approach is demonstrated by studying
isothermal fluid flow through a simple porous medium of a plate with an array of uniform drilled holes and
comparing our findings with those of Tully et al.15 As a preliminary step towards multi-scale closure of the energy
equation, a global scale heat transfer analysis case is also conducted to illustrate the scope of the entire theoretical
framework.

II. Multi-Scale Porous Media Model

A. Representative Elementary Volume and Porosity

Many porous media flow problems involve a wide range of length scales which are generally too costly to fully
resolve. An intuitive approach to this problem is to impose the average effect of the pores on global flow structures.
But first a sensible scale for averaging needs to be defined. An averaging volume should be sized small enough in
order to not filter global flow structures but it should be large enough so as to guarantee containing both fluid and
solid phases at all times. In literature, such a volume is called as a representative elementary volume (REV) (see
Figure 2). In our multi-scale methodology, we further require an REV to be a repeated pattern over a portion of the
porous media.

The porosity, ε , is defined as the volume fraction of fluid phase in a porous media.

V

V
fε = (1)  

Note that the porosity might be defined locally or globally depending on the scale that the volume fraction is
calculated. In this study, however, we will assume that the porosity is uniform over the porous media.

Fluid (f)

Solid (s)Asf

V

Figure 2. Schematic of a representative elementary volume (REV).
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B. Darcy Equation and Ergun Correction
As the first attempt to describe the flow of fluid through porous structures, Darcy1 experimented with gravity

driven flow of water through a porous medium of loosely packed, uniform sized particles. He arrived at the
following relation for pressure drop and the flow speed:

= Dp u
K

µ
−∇  (2)  

The permeability, K with the units of length2, is a measure of fluid flow conductivity of the porous media. The
filter velocity, Du , is defined as:

=D

m
u

Aρ
&

(3) 

A linear relationship represented by Darcy’s Law has been shown to apply to a wide range of problems as long

as a Reynolds number based on permeability, Re /DK
u Kρ µ= , is roughly less than unity. At higher Reynolds

numbers, inertial effects become comparable to Darcian effects. A correction for this flow regime is suggested by
Forchheimer2 and later by Ergun3. Since the form presented here is due to Ergun, we attribute this relation to him.

1/2
= E

i D D Di i i

C
p u u u

K K

µ ρ−∂ + (4)  

C. Local Volume Averaging
For an arbitrary property ψ defined for the fluid phase, volume averaging can be carried out as follows12:

Intrinsic Averaging:

V

1
< > = dV

V
f

ff

ψ ψ∫ (5)  

Superficial Averaging:

V

1
< >= dV = < >

V
f

f

ψ ψ ε ψ∫ (6) 

In the course of volume averaging the governing equations, we need to replace the average of a gradient (or
divergence) with the gradient (or divergence) of an averaged quantity. Slattery4 used the Reynolds transport theorem
and the divergence theorem to arrive at the necessary transformation as shown below:

f f sfV V A
dV dV+ dAi i inψ ψ ψ∂ = ∂∫ ∫ ∫  (7) 

Or

sfA

1
dA

Vi i inψ ψ ψ< ∂ >= ∂ < > + ∫ (8) 

 
sfA

1
dA

V
f f

i i i i i i
f

nψ ψ ψ< ∂ > = ∂ < > + ∫ (9) 

 f
i i i iψ ε ψ< ∂ >= < ∂ > (10)
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In the local volume averaging procedure discussed below, we consider that the flow is incompressible with
constant viscosity. We further consider that the porosity is constant throughout the porous media. These aspects can
be generalized.

1. Averaging of the Continuity Equation
The continuity equation can be written as

( ) 0i iu
t

ρ ρ∂ + ∂ =
∂

(11)

When volume averaged, Eq. (11) becomes:

sfA

1
( ) dA 0

Vi i i i i iu u u n
t t

ρ ρρ ρ ρ∂ < > ∂ < >+ < ∂ >= + ∂ < > + =
∂ ∂ ∫ (12)

Since the fluid will be at rest at the solid-fluid interface due to the no-slip condition, the last term in Eq. (12)
vanishes, and we get:

0i iu
t

ρ
ρ

∂ < >
+ ∂ < >=

∂
(13)

Thus, the continuity equation is unchanged by local volume averaging for incompressible flow. In the case of
compressible flow, we need to have a special treatment for averaging of the product of the density and the velocity
component.

2. Averaging of the Momentum Equation
Averaging of the momentum equation for incompressible flows with no body forces yields the following

equation:

Ti
j i j j ij

u
u u

t
ρ ρ
∂ < >

+ < ∂ >=< ∂ >
∂

(14)

For a Newtonian fluid, the stress tensor is:

T 2 Sij ij ijpδ µ= − + (15)

where ( )1
S

2ij i j j iu u= ∂ + ∂ , thus for an incompressible flow with constant viscosity

2Tj ij i j ip uµ∂ = −∂ + ∂ (16)

Volume averaging of Eq. (16) yields:

A

A

1
T T T dA

V

1
2 S T dA

V

sf

sf

j ij j ij ij j

i j ij ij j

n

p nµ

< ∂ = ∂ < > +

= −∂ < > + ∂ < > +

∫

∫

>

(17)

where
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( )
A

1
S

2
1 1

dA
2 V sf

j ij j i j j i

j i j j i i j j i

u u

u u u n u n

∂ < >= ∂ < ∂ + ∂ >

 = ∂ ∂ < > +∂ < > + + 
 ∫

(18)

The integral term in Eq. (18) vanishes due to the no-slip condition at the solid-fluid interface. Thus Eq. (14)
becomes:

2

A

1
T dA

V
sf

i
j i j i j i ij j

u
u u p u n

t
ρ ρ µ∂ < >

+ < ∂ >= −∂ < > + ∂ < > +
∂ ∫ (19)

The integral term in Eq. (19) filters the force information at the solid-fluid interface and imposes the integral
effect in the volume averaged momentum equation. Note that the convective term still needs to be transformed to a
form involving the convection of the volume averaged momentum component. Following the approach of Gray6, we
decompose the velocity as:

f
i i iu u u′=< > + (20)

where ( )′ represents local deviation from intrinsic averaged values. Applying Eq. (20) to the volume-averaged

convective term:

( )( )

( )

f f
j i j j i i j j

f f f f
j i j j i j j i j j i j

u u u u u u

u u u u u u u u

′ ′< ∂ >=< ∂ < > + < > + >

′ ′ ′ ′=< ∂ < > < > +∂ + ∂ < > + ∂ < > >
(21)

One notes that

f fψ ε ψ<< > > < >� (22)

0ψ ′< >� (23)

Thus, Equation (21) simplifies to:

1

f f
j i j j i j j i j

j i j j i j

u u u u u u

u u u u

ε

ε

′ ′< ∂ >= ∂ < > < > + < ∂ >

′ ′= ∂ < >< > + < ∂ >
(24)

Using Eqs. (10) and (24), Eq. (19) becomes:

2
2

f A

1
T dA

V
sf

fi
j i j i j i ij j j i j

u
u u p u n u u

t

ρ ρ µ ρ
ε ε εε
∂ < > ′ ′+ ∂ < >< >= −∂ < > + ∂ < > + − < ∂ >
∂ ∫ (25)

The last two terms on the right hand side of Eq. (25) are surface and volume filter terms, respectively. These terms
are related to the interaction of fluid and solid phases and local deviations from averaged values. These terms can
not readily be calculated with the global scale (volume averaged) information of flow. This constitutes a closure
problem.

3. Averaging of the Energy Equation
Consider the fluid phase energy equation with constant specific heat and no heat sources:
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( ) f
p f i i f j f j f

T
c u T k T

t
ρ

∂ 
+ ∂ = ∂ ∂ ∂ 

 (26)

Applying local volume averaging:

( ) f
p f i i f f j j f

T
c u T k T

t
ρ

∂ < > 
+ < ∂ > = < ∂ ∂ > ∂ 

 (27)

Using Eq. (9), the diffusive term can be expanded as:

A

A A

dA
V

dA dA
V V

sf

sf sf

f
f j j f f j j f j j f

f f
f j j f j j f j j f

k
k T k T n T

k k
k T n T n T

< ∂ ∂ > = ∂ < ∂ > + ∂

= ∂ ∂ < > + ∂ + ∂

∫

∫ ∫
 (28)

Defining a local temperature deviation as:

f
f f fT T T ′=< > + (29)

and employing the divergence theorem and Eq. (29), the second integral term in Eq. (28) becomes:

f f

A A A V A
dA > dA dA > dV dA

sf sf sf sf
j f j f j f j f j fn T n T n T T n T′ ′= < + = ∂ < +∫ ∫ ∫ ∫ ∫  (30)

Noting that the variation of an averaged quantity within the averaging volume itself is zero,

f

V
> dV 0j fT∂ < =∫ (31)

we arrive at the averaged diffusion term:

A A
dA dA

V Vsf sf

f f
f j j f f j j f j j f j j f

k k
k T k T n T n T′< ∂ ∂ >= ∂ ∂ < > + ∂ + ∂∫ ∫  (32)

Averaging of the convection term yields:

A

1
dA

V sf
i i f i i f i f iu T u T u T n< ∂ >= ∂ < > + ∫ (33)

The integral term on the right hand side of Eq. (33) vanishes due to no-slip condition at the solid-fluid walls.
Using Eqs. (20) and (29), we decompose the convective term as:

( )( )f f
i i f i i f i i i f f

f f f f
i i f i f i f i f

f f f f f f f
i i f i i f i i f i i f

u T u T u u T T

u T u T u T u T

u T u T u T u Tε ε ε ε

′ ′< ∂ > = ∂ < >= ∂ < < > + < > + >
′ ′ ′ ′= ∂ << > < > + < > + < > + >

′ ′ ′ ′= ∂ < > < > + ∂ < > < > + ∂ < > < > + ∂ < >
(34)

Knowing that 0ψ ′< >= , the volume-averaged convection term is obtained:
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f f f
i i f i i f i i fu T u T u Tε ε ′ ′< ∂ >= ∂ < > < > + ∂ < > (35)

Substituting Eq. (32) and Eq. (35) in Eq. (27), we obtain the volume-averaged energy equation for the fluid phase:

A A
( ) dA dA

V Vsf sf

f
f f ff f f f

p f i i f i i f f j j f j j f j j f

T k k
c u T u T k T n T n T

t
ε ρ ε

 ∂ < >
′ ′ ′+ ∂ < > < > +∂ < > = ∂ ∂ < > + ∂ + ∂  ∂ 

∫ ∫  

(36)

Similarly, in the solid phase, the volume-averaged energy equation is:

A A
(1 )( ) (1 ) dA dA

V Vfs fs

s
ss s s

p s s j j s j j s j j s

T k k
c k T n T n T

t
ε ρ ε

∂ < > ′− = − ∂ ∂ < > + ∂ + ∂
∂ ∫ ∫  (37)

In many practical problems, the temperature difference between the solid and fluid phases inside a REV is much
smaller than the global scale temperature variation. This condition is met if the REV is much smaller compared to
global length scale, there is no heat generation or loss inside the REV and temperature distribution does not vary or
vary slowly over time. Under these conditions, we can assume “local thermodynamic equilibrium” (LTE) which
grants:

f s
f sT T T< > =< > =< > (38)

At the solid-fluid interface, the following boundary conditions apply:

AA sfsf
f sT T′ ′= (39)

AA sfsf
f j f s j sk T k T∂ = ∂ (40)

Also noting that sf fs= −n n , and adding Eqs. (36) and (37), we obtain the local volume averaged energy equation:

A
[ ( ) (1 )( ) ] ( ) [ (1 ) ] dA

V
( )

sf

f s
p f p s p f i i f s j j j j f

f
p f i i f

k kT
c c c u T k k T n T

t
c u T

ε ρ ε ρ ρ ε ε

ε ρ

−∂ < > ′+ − + ∂ < >< > = + − ∂ ∂ < > + ∂
∂

′ ′− ∂ < >

∫

(41)

D. Closure Terms
The closure problem in porous media is often handled by heuristically replacing the closure terms in Eq. (25) by

Darcy and Ergun terms given in Eq. (4).

2
2 1/2

= fi E
j i j i j i i i i

u C
u u p u u u u

t K K

ρ ρ µ µ ρ
ε εε
∂ < >

+ ∂ < >< > −∂ < > + ∂ < > − < > − < > < >
∂

(42)

While Eq. (4) only relates the bulk pressure drop to the total mass flow rate, the solution of Eq. (42) provides
locally-averaged flow field information throughout the porous media. Eq. (42) is very similar in form to the Navier-
Stokes equations. This enables us to easily handle both conjugate open flow (without porous media) and porous flow
problems and permits application of no-slip conditions at the solid walls bounding the solid matrix. By this
treatment, the problem is reduced to the determination of two parameters, namely, permeability, K and Ergun
coefficient, EC . These parameters are either estimated through existing empirical correlations or found via
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experimentation for specific types of porous media. Note that there is no fundamental reason for Eq. (42) to be
correct. However, in many tightly packed porous media, momentum loss is mostly due to the pore scale flow
structures which are represented by the two closure terms in Eq. (25). Thus, generally, Eq. (42) is expected to
closely follow Eq. (4).

Following the conventional closure approach of the energy equation, invoking local thermal equilibrium
assumption, we first introduce the constitutive relation suggested by Nozad et al.9 :

b f
i iT T′ = ∂ < > (43)

where bi is a space dependent vector transformation function. Also using the definition of the dispersion tensor:

D bd
ij i ju′= − < > (44)

The local volume-averaged energy equation ( Eq. (41) ) can be transformed to:

[ ( ) (1 )( ) ] ( ) ( ) (D )p f p s p f i i p f i ij j

T
c c c u T c T

t
ε ρ ε ρ ρ ρ∂ < >+ − + ∂ < >< >= ∂ ∂ < >

∂
(45)

where Dij is the total effective thermal diffusivity tensor given as:

K
D D

( )

e
ij d

ij ij
p fc

ε
ρ

= +  (46)

Here Ke
ij is the effective thermal conductivity tensor. A detailed account for development of Eq. (45) can be found

in Ref. 11. Our purpose here is to demonstrate that Eq. (41) can be transformed to a form similar to the regular point
energy equation. However, in our current work, there is no need to adopt this approach.

Conventional approaches to the closure problem in volume-averaged momentum and energy equations involve
heuristic assumptions, constitutive relations and empirical dependence. This disturbs practicality of numerical
simulations. Instead, we attempt to compute the closure terms directly over typical pore geometries observed in
porous media. Basically, we then have two levels of numerical simulations; pore scale flow simulations conducted
over typical pore models, and global scale flow simulations facilitating the closure terms supplied by pore scale
simulations. This helps us avoid making any further simplifications other than the assumptions undertaken during
the derivation of the volume averaged governing equations. More importantly, this strategy provides a stand alone
method which can be applied completely free of empiricism. Computational cost associated with this multi-scale
approach strongly depends on the level of uniformity and complexity of the pores. For a uniform porous media,
only one pore model is needed.

With the multi-scale approach, we can either evaluate the closure terms in Eq. (25) directly or deduce the
permeability and Ergun coefficients of the porous media by matching Eqs. (25) and (42): 

 

1

A

1
= T dA

Vi ij j
sff

K u nµ
−

 
− < >  

  
∫ (47)

1/2

= < > f
E j i j

i i

K
C u u

u u
′ ′∂

< > < >
 (48)

The direct closure method is more desirable since it avoids the heuristic assumption of replacing the closure
terms with the Ergun relation. However, we use the latter in the test case presented here in order to compare our
results to Tully et al.15 and investigate the behavior of the permeability and Ergun coefficients with changing flow
speed. The flow chart of the present multi-scale algorithm, for both approaches, is presented in Figure 3. 
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E. Numerical Method
We have shown that for the flow through porous media, the continuity equation is unchanged and momentum

equation is very similar in form to the regular Navier-Stokes equations with additional momentum source terms and
the other terms modified by factors of porosity,ε . Thus a Navier-Stokes solver can easily be modified to account
for porous media.

We utilize a pressure-based finite volume solver (Ref. 14) for multi-block body-fitted grids which enables us to
solve for combined open and porous domains. Standard central difference operator is used for pressure and

Figure 3. The multi-scale algorithm flowcharts for direct closure computations (left), and closure estimates
via permeability and Ergun coefficients (right).
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diffusive fluxes whereas a second order upwind method is used for convective fluxes. Using a short-hand notation
for the u-momentum equation with collocated arrangement of variables, the discretized equation can be written as

=p p nbr nbrA u A u S+∑ (49)

where nbr represents the six neighboring points (East, West, North, South, Top and Bottom) of the node p. nbrA

represents the corresponding contributions. S term accounts for the sources that cannot be expressed in terms of the
point p and its immediate neighbors. It includes contributions from the pressure term, cross-derivative diffusion
terms and higher-order contribution of the convective fluxes. In porous regions, another source term porousS is added

to reflect the effect of momentum loss experienced.

=p p nbr nbr porousA u A u S S+ +∑ (50)

Also pA and nbrA are modified to account for the porosity factors as shown in Eq. (25). 

The extended SIMPLEC (Consistent SIMPLE) (Ref. 7-8) algorithm is employed. Specifically, we employ
combined Cartesian and contravariant velocity components, cast in a finite volume form of the governing equations,
for the primary velocity variable and flux computations, respectively (Ref. 10).

III. Results and Discussions

A. Isothermal Non-Darcian Flow through a Drilled Orifice Plate
This test case is designed for validating our multi-scale methodology in a problem with uniform and well defined

pore geometry. The porous material used herein is a metallic plate with an array of uniform and evenly distributed
drilled holes. The hole pattern detail is depicted in Figure 4. The porous plate is inserted in a cylindrical channel test
section. This problem was studied before by Tully et al.15 both numerically and experimentally. Experimental and
computational domains used in their study are presented in Figure 5. Computations are performed over a simplified
domain to avoid excessive cost. However, the simplification undertaken may be questioned on the grounds that the
velocity profile entering the porous plate in the experimental case is likely to be more complicated than what is
realized in the computational domain. We address this question later on by studying the sensitivity of the
numerically obtained pressure drop to the inlet velocity profile shape. First we try to reproduce the results previously
reported by Tully et al.15

The porosity of the drilled plate can easily be calculated as:

2

2

2
Void Volume 2

= = = 0.1442
Total Volume (2 )a

φπ
ε

 
 
   (51)

Ø 0.020" / 0.0508 cm

2a

2a

a

a = 0.033" / 0.08382 cm

R 0.010" / 0.0254 cma
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Input parameters corresponding to experimental data points are summarized in Table 1. Tully et al.15 estimates
the permeability and Ergun coefficient of the porous material by investigating the experimental pressure drop
(across the plate at the centerline) vs. filter velocity data. Coefficients of a quadratic curve fit to this data can be used
to calculate the K and EC values for best fit to experimental data. The parameters they derived for this case are

25.740 9 m

0.487E

K E

C

= −
=

(52)

1. Empirically deduced porous media model parameters (from Tully et al.15)
First, we present global scale computational results using permeability and Ergun coefficient values provided by

Tully et al.15 Figure 6 shows that the computational and experimental values of the pressure drop agree well with
each other. This is an expected behavior since permeability and Ergun coefficient were empirically determined to
grant the best fit to the experimental data. We include this approach to help establish a baseline model to help
contrast this and our multi-scale approach.

EXPERIMENTAL SETUP

2.54 cm x

y

P
O

R
O

U
S

2.631 cm

O
ut

flo
w

No-Slip Wall

Symmetry Line

0.635 cm
2.54 cm

CO MPUTATIONAL DO MAIN

Porous Plate

m
.

Figure 5. Experimental setup and computational domain.

Table 1. Summary of experimental conditions.
Fluid properties (Air @ 24.2 oC) Inlet Filter Velocities (m/s)

Density (ρ) 1.1875 kg/m3 UD1 10.5
Dynamic Viscosity (µ) 1.8048E-5 kg/m.s UD2 13.1
Specific Heat (cP) 1006.2 J/kg.K UD3 16.3
Thermal Conductivity (k) 0.025913 W/m.K UD4 18.1

UD5 20.1
UD6 23.3
UD7 25.8
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2. Multi-Scale Model
Here, we apply the described multi-scale methodology to simulate the same problem independent of

experimental results. For closure, we will use the momentum equation in the form of Eq. (42) where we evaluate the
permeability and the Ergun coefficients via Eqs. (47) and (48). We prefer this form here in order to be able to
compare our results with Tully et al.15 and assess the variance of these parameters with the flow speed.

Note that the drilled plate pore geometry is uniform, i.e., a single representative elementary volume (REV) is
sufficient to describe the porous medium. An REV for the drilled plate can be chosen as shown in Figure 7. 
 

We could have chosen only a small section of the tube as an REV since it would be a repeating pattern.
However, by extending the REV to full length of the tube, we include the averaged effect of the developing flow
region. Numerical model of this domain is shown in Figure 8. An axisymmetric domain is used for the
computations. In order to conserve mass flux, the inlet velocity for this domain will be 1/ε times higher than the
inlet velocity of the global domain where 0.1442ε = is the porosity.
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Permeability

In this section, we estimate the permeability of the drilled plate using Eq. (47). Note that this equation simplifies
the problem in hand greatly. Thus far, we have treated the drilled plate as an isotropic porous media although it is
clearly not isotropic. However, the flow through the plate is essentially axial (perpendicular to plate). Thus we are
only interested in the axial component of the flow for this particular case and we can express Eq. (47) as:

1

A
= V dAx r

i f r
inner wall

u u
K u

r x
µ µ

−
 ∂ ∂ − < > +  ∂ ∂  
∫ (53)

Note that the outer wall is not a part of the repeating pattern and the effect of pressure distribution on the outer
wall will appear as an acceleration of the flow inside the tube to conserve total mass flux rate through the plate. On
the other hand, pressure distribution on the inner wall does not appear in Eq. (53) because = 0xr rp nδ .

Also from Figure 7, we immediately see that:

= = 0x r

inner wallouter wall

u u

x x

∂ ∂
∂ ∂

 (54)

Thus, Eq. (53) reduces to

1

A
= V dAx

i f r
inner wall

u
K u

r
µ µ

−∂ − < >  ∂ ∫ (55)

The integral term is the net skin friction force applied on the inner wall of the tube. Denoting this by Fτ , we get:

2V ( )
= =i f i

u u r L
K

F Fτ τ

µ µ π< > < >
− −  (56)

Fτ can easily be calculated by numerical integration.

Ergun Coefficient

For permeability, we only used the stress information on the solid-fluid boundary of the pore. On the other hand,
the Ergun term involves the inertial effects in the fluid volume passing through the pores. Remember the expression
derived for the Ergun term
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Figure 8. Numerical domain for pore scale analysis.
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1/2

= < > f
E j i j

i i

K
C u u

u u
′ ′∂

< > < >
 (57)

For a 2-D axial flow, the volume averaged term can be approximated as

2

=1

1
< > ( )

V

ncell
f

j i j x x r
nf

u u u u u
x r

∂ ∂ ′ ′∂ ≈ + ∂ ∂ 
∑ (58)

where the derivative expressions are evaluated with second order central finite differences.

3. Model Assessment
For the flow speeds corresponding to the global scale cases listed in Table 1, we have estimated the permeability

and Ergun coefficients by employing the methods summarized above. Using these parameters, we have performed
the global scale computations and compared our results to the experimental pressure drop data. Results are given in
Table 2 and Figure 9 with the following conventions:

EP∆ : Experimental measurement of pressure drop across the plate

CP∆ : Computed pressure drop across the plate with K and EC estimated from pore scale analysis

CE

K

P

P

∆

∆
: Proportion of pressure drops due to inertial and Darcian terms

We have mentioned earlier that the inertial effects in the flow become pronounced for > 1
K

Re . Table 2 shows

that for the whole range of available experimental data, the inertial term in the porous region is dominant. And thus
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Figure 9. Pressure drop results in comparison to experimental data by Tully et al.15

Table 2. Pore level analysis results for drilled plate
Case

DU (m/s) /DU ε Red Re
K

K
EC CP∆ (Pa) EP∆ (Pa)

ECP / KP∆ ∆

1 10.5 72.82 2434 43 3.89 910−× 0.380 5263 5159 16.4

2 13.1 90.85 3033 52 3.63 910−× 0.372 8227 8331 19.3

3 16.3 113.0 3772 62 3.38 910−× 0.364 12818 12790 22.6

4 18.1 125.5 4195 68 3.26 910−× 0.359 15823 15830 24.4

5 20.1 139.4 4653 74 3.14 910−× 0.355 19603 19140 26.3

6 23.3 161.6 5400 84 2.98 910−× 0.349 26481 26070 29.2

7 25.8 178.9 5970 91 2.88 910−× 0.344 32487 32750 31.3
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almost the entire pressure drop is imposed by this term. Denoting the additional pressure drop due to the existence of
the porous material by QP , we have

= | | | |E E
Q i i i i i

C C
P u u u u u

K K K

µ ρ ρ< > + < > < >≈ < > < > (59)

Thus for inertial dominant regime of the flow, we may argue that the only significant parameter in describing the

effect of momentum loss in the porous media is /EC K which is then analogous to a form of drag coefficient.

Furthermore, it is shown in Table 4 that this parameter weakly depends on the flow speed. To test how sensitive the
results are to the changes in this parameter, we compare our results for multi-scale method to the ones obtained with
fixed values of K and EC as suggested by Tully et al.15 Table 3 shows the relative differences. Filter velocity vs.

pressure drop curves are presented in Figure 10.

We observe that the error associated with using fixed values of K and EC is not significant for inertial

dominated flow regime. However, for the slower flow rates, the Darcian term becomes important and the pressure
drop is then governed by both K and EC separately which were shown to be varying with flow speed. Nevertheless,

for the current problem, the computed pressure drop doesn’t exhibit significant sensitivity to the detailed porous
media model parameter values.

4. Assessment of Sensitivity to Skewness of Inlet Profile
In the computations, a parabolic or nearly parabolic velocity

profile which is also symmetric across the centerline of the
channel exists at the upstream face of the porous plate.
However, in the experimental case, a more complex profile is
likely to develop due to the turning and contraction of the flow

Table 3. Comparison of fixed parameters approach and multi-scale results.
Case /EC K Fixed K and EC % Difference in /EC K % Difference in P∆

1 6093 Suggested values 5.2 4.6
2 6174 By Tully et al8 4.0 3.2
3 6261 95.74 10K −= ×  2.6 1.3

4 6288 0.487EC = 2.2 1.2

5 6335 / 6428EC K = 1.4 0.02

6 6393 0.5 0.5
7 6410 0.3 1.5
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Figure 10. Pressure drop curves for fixed parameters approach vs. multi-scale method.
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as shown in Figure 5. In this section, sensitivity of pressure drop across the porous plate to non-uniformity of the
inlet velocity profile will be tested by comparing results for uniform and skewed velocity profile at the inlet. The
entrance section of the computational grid is shortened in order to prevent smearing of the skewed profile before
reaching the porous region. The modified computational domain for this analysis is illustrated in Figure 11. Two
types of inlet velocity profiles are imposed while keeping the mass flow rate constant:

Uniform with U=23.31 m/s
Trapezoidal with Umin=11.65 m/s and Umax=34.96 m/s

Figure 12 shows the change in velocity profiles across the porous plate. We see that the two velocity profiles tend to
get closer towards downstream.

Figure 13 shows pressure drop profiles across the porous region. While the pressure drop is almost constant across
the whole channel height for the uniform inlet case, skewed profile case shows +32% to -27% variation with respect
to the uniform inlet case. More insight to the comparison can be provided by examining the pressure drop
normalized with local convective scale. Average values of the pressure drops are provided in Table 4. We observe
that the difference caused by the skewness of the inlet velocity profile is not trivial. However, we may argue that the
fully skewed inlet profile as tested is an extreme case.
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Figure 13. Profiles of pressure drop (left) and mass normalized pressure drop (right)
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B. Heat Transfer in a Channel with 90-deg Turning Flow
A heat transfer problem through a 90-deg turning channel filled with porous metallic foam is studied. The

problem definition schematic is given in Figure 14. A constant temperature and velocity inlet is considered along a
portion Wj of the top wall. A constant heat flux condition is imposed through the bottom wall while other walls are

kept adiabatic.

Global scale computations are performed using Eqs. (42) and (45) where closure parameters used are given in
Table 5. 

 

We investigate the dimensionless temperature distribution along the heated wall and skin friction coefficient
across the domain.

=
/

wall inlet
w

fluid

T T

qH k
θ

−
(60)

2
=

1/ 2
i e

f
f e

p p
C

Uρ
−

(61)

The purpose of this test case is to present preliminary computational results involving heat transfer. As shown in
Figure 15, the thermal characteristics are more sensitive to the Reynolds number than the skin friction coefficient.

Table 4. Summary of average pressure drops across the porous plate.
Skewed Inlet

Velocity Profile
Uniform Inlet

Velocity Profile
%Difference

P∆ 2.285E+4 2.220E+4 2.93

*P∆ 37.04 33.33 11.1

1

1 ny

porous
j

P P
ny =

∆ = ∆∑

*
2

1

1 ny

j porous

P
P

ny Uρ=

 
∆ = ∆ 

 
∑

Table 5. Closure parameters of the metallic foam as reported by Tzeng et al.16

Porosity, ε Permeability, K
Ergun

Coefficient, EC
Effective Thermal
Conductivity, eK

0.93 2.34E-7 (m2) 0.0476 5.23 (W/m.K)
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Figure 14. 90-deg turning flow problem description.
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IV. Summary and Conclusion
We have developed a multi-scale strategy for efficient numerical simulations of flows through porous media.

The key feature of this method is independence from empiricism. To assess the present approach and those
presented in the literature, we have assessed the permeability and the Ergun coefficient and compared the computed
values with those estimated empirically. Furthermore, the performance of the model has been tested. Both the
permeability and Ergun coefficient are flow properties; in contrast, the empirical approach typically results in
constant values of these parameters independent of the flow conditions. Hence, the present multi-scale approach is
more versatile and can account for the possible changes in flow characteristics. Furthermore, Eq. (48) shows that the
Ergun coefficient scales with the square root of the permeability. So, a decrease in permeability also yields a
decrease in Ergun coefficient. Thus, error in pressure drop due to inaccurate calculation of permeability tends to be
compensated by the inertial term through the Ergun coefficient. Furthermore, the sensitivity of the pressure drop to
the detailed model parameters is assessed in the context of a test problem.

Rigimesh is formed by pressing layers of steel wire meshes. Thus, a Rigimesh plate is denser towards the faces
making porosity smaller. We mentioned before that in the case of SSME, a Rigimesh plate with about 9% void
space is used. This implies substantial acceleration of flow inside the pores. Thus, the compressibility effect is likely
to become significant. These issues will be address in future efforts.
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