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As society has a growing demand for space travel, the need to advance current 

technology is evident.  With the increasing demand comes a heightened need for a cost 

effective and reliable means of transport.  In order to achieve this, a better understanding 

and new methods of controlling the temperature of certain components of liquid 

propellant rocket engines (LPREs) is necessary.  Currently a number of component 

models are based on ad-hoc assumptions of the fluid flow characteristics.  One such 

example is the injector face.   

Injector plates for LPREs are often made of porous materials to aid in cooling. One 

such material is Rigimesh, made from sintered stainless steel.  One process of cooling the 

injector face, termed transpiration cooling, occurs when a small amount of fuel is bled 

through the Rigimesh, downstream of which combustion takes place.  Previous studies 

have shown the fuel flow rate through the porous media to be proportional to the pressure 

drop across the plate and the local temperature of the metallic material.  However, to this 

author’s knowledge, all prior studies have been heuristic.  The focus of this thesis is on 

 xv



 

numerically modeling the flow through porous materials in an attempt to gain an efficient 

method of determining the flow field in LPRE injectors and temperatures across the 

injector face plate.   
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CHAPTER 1 
INTRODUCTION – LIQUID PROPELLANT ROCKET ENGINES 

The idea of liquid propellant rocket engines (LPREs) was conceived over 100 years 

ago.  Since then, many designs have been built and tested in the United States alone; and 

their significance lies in the fact that they are the heart of modern day space exploration 

[1].  Before presenting the work of this thesis, a brief introduction to the history and 

design of LPREs is discussed. 

1.1  Liquid Propellant Rocket History 

Over the past century LPREs have become a well developed and established 

technology; as a consequence they are now the main source of propulsion for space 

launch vehicles.  Robert H. Goddard has been attributed as the first developer of a LPRE.  

In 1921 he constructed the first LPRE, this lead to the first static hot-firing test in 1923 

and later the first flight on March 16, 1926.  Goddard went on to achieve many other 

technological breakthroughs in the development of LPREs; however, much of his work 

went unrecognized within the industry as a whole.  Goddard published very little during 

his lifetime and was hesitant to release his work for fear that others would utilize 

unproven concepts.  Much of his work has become known after the fact, primarily 

through the publication of various works by his wife [1].   

 Most of the designs today are due in part to the work of Aerojet, Rocketdyne, and 

Pratt and Whitney, to name a few.  Aerojet, which originated in 1942, was the developer 

of many jet-assisted take off (JATO) engines.  Several of these were successfully flown 

in the F-84 fighter bomber, the PB2Y-3 flying boat, and the B-29, B-45, and B-47 

1 
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bombers.  Furthermore, Aerojet also developed the booster LPRE for the Bomarc Area 

Defense system and is most widely known for their development of the Titan LPREs.  

Rocketdyne, which started in 1945, is now owned by the Boeing Company, and has been 

the largest LPRE company in the United States.  As stated by Sutton, “up to June 1, 2001 

Rocketdyne engines had boosted 1516 vehicles” [1:997]  This remarkable 

accomplishment includes the of the Saturn I and the Saturn V from the United States 

Apollo program, as well as the historic LOX/LH2 Space Shuttle Main Engine (SSME) 

developed in 1972 [1]. 

 Pratt and Whitney (P&W), a United Technologies Company, came onto the scene 

in 1957.  One of their most notable accomplishments was the development of the RL10 

LPRE, Figure 1.1, in 1959.  Since then it has become P&W’s most successful LPRE [1].  

Deemed by P&W as the “most reliable, safe and high performing upper-stage engine in 

the world” [2:1], the RL10 has been the workhorse of the industry.  The injectors of the 

RL10 are hollow post and sleeve elements, essentially two concentric pipes (see Section 

1.2.1 of this thesis).  Moreover, P&W engineered a porous stainless-steel material called 

Rigimesh, which was used to cool the injector face via transpiration cooling [1].  This 

method of cooling the Rigimesh is the primary focus of this report and will later be 

discussed in detail. 
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Figure 1-1.  Pratt and Whitney’s RL10 LPRE, from Pratt and Whitney [3]. TheRL10 
produces a thrust from 16,500 lb to 22,300 lb and weighs 310 lb to 370 lb 
depending on the model.  The fuel and oxidizer are liquid hydrogen and liquid 
oxygen, respectively. 
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1.2  Liquid Propellant Rocket Engine Components 

The primary function of an LPRE is to generate thrust through combustion.  High 

temperature and high pressure gasses are produced in the combustion chamber (Figure 1-

2) and ejected at very high velocities through the nozzle.  In the many mechanisms of a 

LPRE, the thrust chamber is the main component responsible for the generation of the 

thrust.  Within the thrust chamber, the liquid propellants are injected, the droplets are 

atomized then vaporized, combusted, accelerated to sonic velocities at the throat, and 

then supersonic velocities within the diverging section of the nozzle. 

A number of components are responsible for the above mentioned events, for 

example, the injector is responsible for the introduction and atomization of the 

propellants into the combustion chamber.  As expected, the combustion chamber 

vaporizes the propellants, combusts them, where they are accelerated through the nozzle 

and finally ejected [4-7].  Brief discussions of the components of a thrust chamber are 

presented here, with emphasis on the particular components applicable to this report.   

1.2.1  Injectors 

The primary function of the injectors is to introduce and gauge the flow of the 

oxidizer and fuel to the combustion chamber.  Over the decades of successful LPRE 

development many styles and designs of injectors have been offered, some more 

successful than others.  Several factors, such as, engine performance, combustion 

stability, reliability, structural integrity, the weight and cost of the injectors, thermal 

protection, and hydraulic characteristics all contribute to an injector’s success.  To date, 

most designs have been empirical.  The primary focus of this thesis is the thermal  
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Figure 1-2.  Cutaway of a regeneratively cooled tubular thrust chamber, from reference 

Sutton [1] and Sutton [5]. Originally used in the Thor missile. The nozzle 
diameter is about 15 inches and originally produce a thrust of 120,00 lbf, 
which was later upgraded to 165,00 lbf.   

modeling of the injector face by numerical methods.  For a more detailed discussion 

regarding the other design parameters the reader is referred to the following references: 

[4-7]. 
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Throughout the history of LPREs, a number of injector elements have been used.  

These are commonly split into three categories: non-impinging, unlike-impinging, and 

like impinging.  Non-impinging elements inject the fuel and oxidizer separately into the 

combustion chamber and include: showerhead, fan former, and coaxial elements as seen 

in Figure 1-3.   The coaxial elements are similar to those mentioned previously for 

P&W’s RL10 LPRE. 

Fuel

Ox.

Fuel

Ox.

Liquid Oxygen

Gaseous 
Hydrogen

Spacer
Outer Sleeve

Inner Sleeve

Injector 
face

Injector face

Oxidizer Manifold

Fuel Manifold

(A)  Shower Head

(B)  Spray or “Fan Former”

(C)  Hollow Post and Sleeve Element (Coaxial)
 adopted from [Sutton & Biblarz]

Injector 
face

 
 

Figure 1-3.  Non-impinging injector elements, recreated from Huzel [4], Sutton [5], 
Huzel [6], and Brown [7]. 
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Unlike-impinging elements direct a stream of fuel and a stream of oxidizer to the 

same point, where they impinge upon each other and mix.  These include unlike doublets 

and unlike triplets, as seen in Figure 1-4.   

Fuel

Ox.

Fuel

Ox.

Fuel

Ox.

Fuel

Ox.

Injector face

(A)  Unlike Doublet (B)  Unlike Triplet

Oxidizer Manifold

Fuel Manifold

Oxidizer Manifold

Fuel Manifold

Injector face

 
 

Figure 1-4.  Unlike-impinging injector elements, recreated from Huzel [4], Sutton [5], 
Huzel [6], and Brown [7]. 

Like-impinging elements are very similar to the unlike-impinging elements in 

design.  However, rather than directing fuel and oxidizer at one another; fuel is injected at 

fuel and oxidizer at oxidizer.  This produces a fan shaped spray of the separate 

propellants, which helps in atomization of the propellants.  As expected the types include, 

like doublets (commonly called self impinging) and like triplets.  Like doublets are the 

most common and can be seen in Figure 1-5. 

One common aspect to all types of injector elements is the injector face.  In the 

case of the SSME and the P&W’s RL10 the injector face is made of a porous material, 

through which fuel is bled to aid in cooling the face.  This process has been termed 

transpiration cooling; and the numerical modeling of this process is the primary focus 

herein.  Later, a simplified version of a single injector element will be thoroughly 

discussed and analyzed. 
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Fuel

Ox.

Fuel

Ox.

Injector face

Like Doublet (Self Impinging)

Oxidizer Manifold

Fuel Manifold

 
 

Figure 1-5.  Like-impinging injector elements, also known as, like doublet or self 
impinging, recreated from Huzel [4], Sutton [5], Huzel [6], and Brown [7]. 

1.2.2  Combustion Chamber and Nozzle 

The combustion chamber is the portion of the thrust chamber where the propellants 

are mixed and burned.  The nozzle is typically designed as an integral part of the 

combustion chamber, and has a converging diverging shape to accelerate the propellants 

to supersonic velocitites.  Overall, the design of the combustion chamber and nozzle is 

very dynamic.  The volume and shape of these chambers must provide complete 

combustion of the propellants, provide adequate cooling, as well as accelerate the flow to 

the necessary speeds.   

Cooling of the thrust chamber is extremely important. Without proper cooling the 

walls of the combustion chamber and nozzle could become too hot, causing the materials 

to weaken, possibly to the point of failure.  Fundamentally, all internal faces of the LPRE 

are exposed to hot gases, specifically the injector face and walls of the combustion 

chamber and nozzle.  A typical point of concern is the wall temperatures at the throat, 

where the heat transfer rate is greatest.  However, the temperatures at all locations within 
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the LPRE must be controlled.  Ordinarily there are two methods of cooling the 

combustion chamber and nozzle; the steady state method and heat sink cooling.   

One method of steady state cooling is to line the thrust chambers are with a cooling 

jacket.  The throat region, previously mentioned, requires the greatest care because of the 

extreme heat transfer rate hence cooling jackets are designed to provide the highest 

coolant velocity at the throat.  Additionally, the coolant, usually fuel, is run through the 

cooling jacket and then fed into the injectors; this process is called regenerative cooling.  

It recycles the heat absorbed by coolant rather than letting it go to waste.   

Another type of steady state cooling is radiation cooling.  Here an additional 

section is added to the nozzle exit where it becomes extremely hot and radiates the extra 

heat into space.  An example of the two steady state cooling process, cooling jackets and 

radiation cooling, can be seen in Figure 1-6.   

 

Figure 1-6.  Steady state cooling methods. Left: regenerative cooling jacket.  Right: 
regenerative cooling jacket with nozzle extension for radiation cooling. 
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The primary reason for mentioning these cooling methods is an indirect relation to 

the studies herein.  Some researchers, such as Ryan Avenall [8] have been studying the 

use of metallic foams lining the cooling jacket, particularly in the throat region, to 

increase the heat transfer rate as in a heat exchanger.  The governing equations and 

developed code in this report may be of future use in the modeling of metallic foam lined 

cooling jackets, injectors, or fluid flow through any porous material.      

Alternatively, cooling with transient heat transfer has been used.  In some short-

duration engines the chambers are made thick enough to absorb the heat of the 

combustion process.  Other methods include ablative cooling and heat sink cooling.  

These methods are only briefly mentioned for totality; a more detailed discussion can be 

found in references: [4-7]. 

1.3  Objectives of the Study 

The primary objective of this study is to numerically investigate the conjugate heat 

transfer and flow characteristics of transpiration cooled injectors.  In the cases of the 

SSME and P&W’s RL10 the injector face is made of a sintered stainless steel material, 

Rigimesh™.  The ultimate goal of this study is to obtain a method of acquiring the 

appropriate material properties to accurately model flow through the Rigimesh™.   To do 

so, the methods must first be applied to a porous material with well-known material 

characteristics and a known physical geometry.  Here, flow through an orifice plate made 

of Beryllium copper will be examined numerically, and compared to the respective 

physical experiments performed by Ahmed F. Omar, which are to be published in the 

near future in his dissertation.  The results of this study will aid in future simulation and 

design of rocket combustors.  Additionally, by gaining a better understanding of flow 
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through porous materials, the computational models put forth herein can be extended to 

handle cooling jackets lined with metallic foams.  This too, will aid in the future 

development of LPRE combustion chambers. 

 



CHAPTER 2 
HISTORY OF POROUS MODELING 

This chapter presents a brief history of modeling flow through porous media.  First, 

a presentation of the models and a discussion of important terms are provided, then the 

details and modern equations for modeling are offered.  Additionally, a brief review of 

previous modeling efforts by some other authors is presented.  

2.1  Initial Modeling Efforts 

Since 1856 people have been investigating methods of modeling flow through 

porous materials.  In fact, it was Henry Darcy’s investigations of hydrology (Figure 2-1) 

that revealed a linear relationship between the rate of flow through a porous bed and the 

pressure drop.  This linear relationship is now referred to as Darcy’s Law, 

L
KAQ

f

P∆
−=
µ

.         (2.1) 

In equation 2.1, K is the specific permeability which will be discussed in detail in 

the following section, Q is the volumetric flow rate, A is the cross-sectional area of the 

UD UD

P1 P2

Porous 
Bed

L  
 

Figure 2-1.  Flow schematic for Darcy’s law, equation 2.1, recreated from Kaviany [9]. 
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channel normal to the mean flow direction, L is the length of the porous slug in the flow 

direction, and lastly, P is the piezometric pressure which is defined as: 

ρgzp +=P .         (2.2) 

In equation 2.2, z is the distance measured upwards (against the gravitational direction) 

from some datum level [10].   For the purposes of the work described herein the 

gravitational and buoyancy effects are ignored, hence equation 2.2 reduces to p=P .  

Furthermore, it should also be noted that Darcy’s law is commonly generalized in the 

following form: 

D
fp u

K
µ

=∇− .         (2.3) 

where K is a second order tensor which, again, is discussed in detail in the following 

section.  Additionally, uD is the Darcian velocity vector or filter velocity vector.   The 

Darcy velocity was originally defined by, 

A
muD
&

= ,         (2.4) 

thus, it is the average velocity of the flow at a given cross section [10].  

Since Henry Darcy’s initial efforts, the modeling of porous materials has gained 

much attention.  His model is constantly being verified and extended to handle a wide 

range of flows.  From geological aspects such as ground water modeling, to high speed 

flows through metal foams used in heat exchangers, the limits and use for porous models 

are endless.  As with all engineering applications, efficient and affordable experiments 

are not always attainable.  Therefore, scientists and engineers revert to these models to 

gain an understanding of systems before they are used for real life applications.  As in 

many cases, such as in this thesis, the applicability of these models is still being verified, 
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therefore herein, the results of both numerical and physical experiments are discussed 

simultaneously.  Furthermore, it is important to note that the physical experiments, and 

their resultant data used herein, were not performed by the author.  A majority of the data 

from physical experiments referenced within thesis was provided by the work of, Dr. 

Bruce F. Carroll and Ahmed F. Omar, or in some cases a specific reference may be 

mentioned.  All of the experiments performed by this author are numerical, and the 

results of physical experiments may be referenced for comparison and validation of the 

computational results.   

2.2  Permeability and Porosity 

Before any modeling efforts can be presented, a more detailed discussion of the 

permeability and porosity of the porous structure is needed.  Both properties are based on 

the geometry and structure of the pores in the medium and are necessary to modeling the 

flow through such media.   

2.2.1  Porosity 

To commence, the porosity, ε, of any material is defined as the volume fraction of 

the porous sample occupied by voids.  In a saturated fluid all of the volume of the voids 

is occupied by the fluid, hence the porosity is defined as, 

V
V f=ε ,          (2.5) 

where , and the subscripts f and s represent the fluid and solid phases 

respectively.   

sf VVV +=

2.2.2  Permeability  

Next, the general term, permeability, refers to the conductivity of a fluid through 

the porous medium. This, however, is not very useful because it may vary with fluid 
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properties.  As an alternative, the specific permeability is referred to as the conductivity 

of the fluid through the porous material, independent of the fluid properties.  For 

simplicity, for single phase flow the specific permeability will be referred to as 

permeability.  Based on this definition, the permeability is a material property based on 

the geometry of the pore and is generally a second order tensor. It has units of length2, or 

the unit of the darcy, which was created for practicality [10].  In the words of Dullien, “a 

porous material has permeability equal to 1 darcy if a pressure difference of 1 atm will 

produce a flow rate of 1 cm3/sec of a fluid with 1 cP (centi-Poise) viscosity through a 

cube having sides 1 cm in length” [10:78], hence, 

( ) ( )
( ) ( )

2122
2

3

10*987.0987.0
1 1

1 sec1 1 mm
cmatmcm
cPcmdarcy −=== µ . 

In the case of anisotropic porous media, the permeability is represented by a second order 

tensor that has nine components as follows, 

⎥
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⎢
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⎢

⎣

⎡
=

333231

232221

131211

KKK
KKK
KKK

K .       (2.6) 

A great deal of effort has been put forth by a number of authors, Whitaker [11] and Guin 

[12] for example, to prove that K is symmetric under the assumption that the anisotropic 

porous media is orthotropic (has three mutually orthogonal principal axes), ie., 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

332313

232212

131211

KKK
KKK
KKK

K .       (2.7) 

As previously stated, the above tensor is symmetric, moreover a diagonal matrix is 

formed when the coordinate axes are aligned with the principal axes of the medium [10]. 

Darcy’s law then becomes, 
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=−          (2.8a) 
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=−          (2.8c) 

where Kx, Ky, and Kz have been termed the directional permeabilities.   To gain a better 

feel for the permeability and porosity several values of common materials are given in 

Table 2-1.  

Table 2-1.  Properties of common porous materials.  

Porous Material Porosity   Permeability (m2) 

Foam Metal (also made of other materials) 0.98   
Fiberglas 0.88 - 0.93 2.4E-11 - 5.1 E -11
Berl saddles 0.68 - 0.83 1.3 E -07 - 3.9 E -07
Wire crimps 0.68 - 0.76   
Black slate powder 0.57 - 0.66 4.9 E -14 - 1.2 E -13
Raschig rings 0.56 - 0.65   
Leather 0.56 - 0.59 9.5 E -14 - 1.2 E -13
Granular crushed rock 0.44  0.45   
Soil 0.43 - 0.54 2.9 E -13 - 1.4 E -11
Sand 0.37 - 0.50 2.0 E -11 - 1.8 E -10
Silica powder 0.37 - 0.49 1.3 E -14 - 5.1 E -14
Spherical packings, well shaken 0.36 - 0.43   
Cigarette filters 0.17 - 0.49 1.1 E -09   
Brick 0.12 - 0.34 4.8 E -15 - 2.2 E -13
Sandstone (oil sand) 0.08 - 0.38 5.0 E -16 - 3.0 E -12
Limestone, dolomite 0.04 - 0.10 2.0 E -15 - 4.5 E -14
Coal 0.02 - 0.12   
Concrete (ordinary mixes) 0.02 - 0.07   

Data taken from Kaviany [9]. 

2.2.3  Permeability Models 

The value of the permeability is often determined empirically, however, several 

models have been proposed based on the geometry of the porous medium.  In general, the 

above mentioned models can be split into two categories, capillary models and drag 

models.  In capillary models, the flow is considered in complex channels or conduits, 
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where, as in drag models, the flow is considered over objects.  In this thesis the capillary 

models are of greater interest due to their applicability to the previously mentioned 

Rigimesh™ and the orifice plates used in the physical and computational experiments 

performed herein.  However, for diligence both are mentioned and several models will be 

described. 

2.2.3.1  Capillary models 

First, capillary models are based on known solutions of the Navier-Stokes 

equations for internal flows.  One model is based on laminar flow through a bundle of 

circular tubes of equal length and diameter D (Figure 2-2), in which the corresponding  

porosity ε, is 42
pdnπ  for n tubes per unit area.    

Capillaries / Conduits

d p

dp

 
 

Figure 2-2.  Illustration of capillary model for a bundle of identical capillaries.   

The permeability can be derived beginning with the well known Hagen-Poiseuille 

equation, 

dx
dpd

u
f

p
m µ32

2

−=         (2.9) 
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where um is the mean velocity in the pore.  Subsequently, the mean pore velocity can be 

related to the Darcian velocity by 

dx
dpdn

uu
f

p
mD µ

π
ε

128

4

−== .       (2.10) 

Then, when Equation 2.10 is compared to Equation 2.3, the permeability is found to be 

32

2
pd

K
ε

= .         (2.11) 

Similar models have been proposed for ducts of varying cross-sectional area and a 

network of conduits.  For more information on capillary models, the reader is referred to 

Kaviany [9] and Dullien [10]. 

2.2.3.2  Drag models 

In drag models, flow is considered around objects, spheres, cylinders, etc. rather 

than through a network of capillaries as previously discussed.  Here the total resistance to 

the flow is compared to Darcy’s law as a means of obtaining the permeability of a 

particular material.  One example is for flow over cylinders.  Several authors have 

investigated this numerically and have extracted the permeability based on a curve fit; 

one such example is cited in Kaviany [9].  Other authors have investigated flow over 

spheres, different arrangements of cylinders, and other various shapes.  Generally, a great 

deal of work has been put forth into the determination of the permeability based on these 

drag models, however, for brevity, these models are merely mentioned.  For additional 

details on this subject, the reader is referred to Kaviany [9] and Dullien [10].    

2.2.3.3  Experimental methods 

Experimental rigs used to determine the permeability of a material are commonly 

called permeameters.  Many styles of these devices have been designed, but in general 
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the methodology remains the same.  Measure the pressure drop for a number of flow 

rates, of which Reynolds number is on the order of unity; then fit a straight line to the 

data points.  If the line passes through the origin at zero, then Darcy’s law is being 

obeyed; however, because of the error in the experimental efforts this may not always be 

the case.  If a straight line cannot be fit to the data, then the system is not obeying 

Darcy’s law and further investigation may be necessary [10].   

2.3  High Reynolds Number Flow 

Darcy’s law, as discussed above, is only applicable to low speed flows, i.e. uD is 

sufficiently small.  Typically this means that the Reynolds number, based on the average 

pore diameter, has an order of magnitude near unity or less,   

)1(ORe ==
f

pDf
d

du
µ

ρ
        (2.12) 

where dp is the average particle diameter.  In this case, the diameter of the capillary is 

used.  However, tt should be noted that other authors have defined the Reynolds number 

as 

f

Df
K

Ku
µ

ρ
=Re .        (2.13) 

Based on this definition, Darcy’s law is valid for KRe  up to approximately 0.2.  For the 

purposes of this report, unless otherwise specified, Red will be used. 

The limited applicability of Darcy’s law is based on the fact that it only accounts 

for the viscous resistance of the flow.  For high-speed flows the inertial contributions to 

the flow resistance become noticeable.  A number of authors have attempted to account 

for the inertial effects, and a method that has gained wide spread use has been termed 

Forchheimer’s equation,  
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u
K
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−−=∇ ,      (2.14) 

where the CF is the so called Forchheimer coefficient.  The transition from the Darcy 

(viscous) regime to the Forchheimer (inertial) regime based on KRe  is illustrated in 

Figure 2-3.  Additionally, a number of different equations have been proposed to handle 

the inertial effect.  For a detailed discussion on the effect the different Forchheimer terms, 

the reader is referred to Alazmi [13].  

 
 

Figure 2-3.  Transition from the Darcy regime to the Forchheimer regime in 
unidirectional flow through an isothermal saturated porous medium, scanned 
from Nield [14]. 

As seen in Figure 2-3, the divergence from linearity begins at KRe  of 

approximately 0.2, with a greater influence in the range of 1 – 10.  Additionally, at high 

Reynolds numbers, the inertial resistance dominates because at high Darcian velocities 

the inertial term (uD
2 term) is much larger than the viscous term, as can be inferred from 

equation 2.14, [14]. The high velocity regime is of utmost importance for the current 
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research; hence, both the viscous (Darcian) and the inertial (Forchheimer) coefficients 

will be considered in the subsequent calculations.   

2.3.1  Forchheimer models 

As for permeability, models are necessary for determining the inertial coefficient.  

These models are not as common as those for permeability; however, two models will be 

discussed here.   

Originally it was thought that the value of CF was constant and approximately 0.55.  

However, later studies have shown that it varies with different porous mediums.  One 

study for flow over spheres showed that, 

⎟⎟
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⎝
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e

p
F D

d
C 5.5155.0         (2.15) 

where, 

hw
whDe +

=
2 ,         (2.16) 

with w and h being the width and height of the channel, respectively.  In the case of a 

cylinder De is simply the diameter.   

Other models, beyond Forchheimer’s extension, have also been proposed.  One 

such example is an extension of the Carman-Kozeny theory, for details see Kaviany [9] 

and Nield [14], where the fluid and matrix properties are related to the pressure drop, by 
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=− .     (2.17) 

Once again, dp is the particle diameter or appropriate characteristic length scale of the 

porous medium.  Also, the numerical constants, 180 and 1.8, in equation 2.17 have been 

written by Nield as 150 and 1.75, respectively.  The relationship then becomes Ergun’s 
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correlation. However equation 2.17 as it stands will be used herein.  Additionally, the 

permeability and Forchheimer coefficient can be extracted from equation 2.17 as 

( )2

32

1180 ε

ε

−
= pd

K         (2.18) 

2321180
8.1
ε

=FC         (2.19) 

It should be noted that this is an ad hoc procedure for purposes of numerical solutions 

only. 

2.3.2  Experimental methods 

Similar methods to those performed for determining the permeability 

experimentally can be applied here.  In the experimental procedures applicable to this 

report the pressure upstream and the pressure downstream of the plate were varied in 

order to apply an appropriate mass flow rate.  The appropriate mass flow rate means the 

flow rate is large enough for inertial effects to dominate.  Then, with the permeability 

known from the previous low speed experiments, the inertial or Forchheimer coefficient 

can be extracted based on equation 2.11.  Note that this does not include the pressure loss 

due to any boundary layer effect felt in the real situation.  

2.4  Semi Heuristic Equations 

In order to model flow through porous media in conjunction with flow through 

plain media, i.e. an open channel, a single set of governing equations is desired.  As 

stated by Kaviany, this would be “too complicated to be of practical use” [9:66]. Instead, 

many authors have attempted to develop an equation for modeling flow through porous 

media comparable to the Navier-Stokes equation.  The first attempt at this was by 
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Brinkman, who included a term analogous to the Laplacian term of the Navier-Stokes 

equation, 

DD uu
K

2∇′+−=∇ µ
µ fp ,       (2.20) 

where µ′  is an effective viscosity.  Some authors have set µ′  equal to fµ , while others 

have defined it using the Einstein formula, given by 

([ )]εµµ −+=′ 15.21f .        (2.21) 

However, the governing equations used herein are based on the premise that µ′  equals 

fµ .   

 Other authors have attempted to derive a set of governing equations based on the 

local volume averaging of the Navier-Stokes equation.  This however leaves a large 

number of unknowns that require experimental verification [9].  A number of different 

equations have been proposed; however, one typically accepted form based on 

semiheuristic techniques is as follows. 

2.4.1  Semiheuristic Continuity and Momentum Equations 

First, the volume average of any scalar of vector quantity can be defined as 

∫=
V

kk dV
V

ψψ 1 .        (2.22) 

Here V is the volume of a representative elementary volume, (REV) as seen in Figure 2-

4.  Additionally the intrinsic volume average is defined as 

∫=
V

k
k

k
k dV

V
ψψ 1 .        (2.23) 

This leads to the continuity and momentum equations for Newtonian fluid in steady, 

incompressible flow in porous mediums, 
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Figure 2-4.  A schematic of a representative elementary volume and the position vectors 
used.  The fluid phase is shown as continuous, scanned from Kaviany [9]. 

0=⋅∇ fu          (2.24) 
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Here, ε  is the previously defined porosity (equation 2.5) and S is a momentum source 

term representing the flow resistance containing two terms. For the x direction S is 

represented by 

fff
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ff
x uu

K
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u
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µ
.      (2.26) 

In equation 2.26 the first and second terms are respectively, the previously discussed 

Darcy and Forchheimer terms.  In the plain media or open channel, the porosity, ε , is 

unity and the source term is zero.  Equation 2.25 then reduces to the well known Navier-

Stokes equation for the incompressible constant property flow of a Newtonian fluid. 
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2.4.2  Energy Equation 

Finally, the steady energy equation with no generation, and assuming thermal 

equilibrium between the solid and fluid phases of the porous media can be written as 

( ) [ ]TkTc effffp ∇⋅⋅∇=∇⋅uρ ,      (2.27) 

where, 

( ) fseff kkk εε +−= 1 .        (2.28) 

Additionally, Nield [14], states that the effective thermal conductivity, equation 2.28, is 

applicable when the conduction between the solid and fluid phases occurs in parallel.  If, 

on the other hand, the conduction takes place in series, the effective thermal conductivity 

should be written as 

( )
fseff kkk
εε

+
−

=
11 .        (2.29) 

This effectively gives a bound for the actual effective thermal conductivity, parallel being 

the upper bound and series being the lower bound.  

Subsequently, the energy equation can be extended to allow for heat transfer 

between the solid and fluid phases.  For the fluid phase the energy equation can be 

written as 
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 (2.30) 

and for the solid phase, as 
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Here the effective thermal conductivities for the solid and fluid phases respectively, can 

be written as 
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ffeff kk ε=          (2.32) 

( ) sseff kk ε−= 1 ,         (2.33) 

where asf is the specific surface area of the interface and hsf is the heat transfer coefficient 

between the solid and fluid phase.  As expected, the heat transfer coefficient must be 

based on another model.  Alazmi and Vafai give three different models seen in Table 2-2.  

The effect of these models, along with the effect of the Forchheimer and Brinkman terms 

are discussed in Alazmi [13], their respective paper.  However, for the purposes of this 

thesis the applicability of all three models to the porous media of interest will be further 

explored.   

Table 2-2.  Heat transfer coefficients with respective fluid to solid specific surface area. 

Model hsf asf Notes 

1 
( )

p

f

d
k 6.031 RePr1.12 +

 
( )

pd
ε−16   

2 59.033.0 RePr064.1 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

p

f

d
k

 
( )

pd

21346.20 εε−  Re > 350 

3 
1

3231 10RePr2555.0

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

s

p

f

p

k
d

k
d ε

 
( )

pd
ε−16   

Models taken from Alazmi [13]. 
 
 
 
 
 
 
 
 
 
 
 
 

 



CHAPTER 3 
FINITE VOLUME METHOD, SIMPLE ALGORITHM, & GRID GENERATION 

As previously discussed, the use of porous injector plates is common in rocket 

engines.  However, full fledged experiments, in order to gain temperature profiles and 

pressure drops through the porous media, are not always practical.  Additionally, for 

many practical applications, the Navier-Stokes equations, with or without the addition of 

the momentum source term for porous media, can not be solved analytically.  A computer 

simulation on the other hand, can be fast, easy, and most important, affordable.  

Throughout this chapter the methods used to discretize the partial differential equations 

presented in Chapter 2, into a set of algebraic equations and then solve those equations 

are discussed.   

3.1  Algorithm Overview 

The algorithm and notation within is based primarily on the methods presented in 

Chapter 7 of Ferziger [15], as well as Patankar [16].  The code employs the SIMPLE-

based pressure-correction method for solving the Navier-Stokes equations on a Cartesian 

or axi-symmetric staggered grid.  The discretization is based on the finite volume 

technique, where the diffusive terms are approximated using a central difference scheme 

(CDS) and the convective terms are approximated by one of three schemes, first order 

upwind scheme (UDS), second order upwind scheme (2UDS), or CDS.    A deferred 

correction approach of Stone’s Method is used for solving the resulting system of linear 

equations. 

27 
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3.2  Discretization of the Governing Equations 

The finite volume technique is based on dividing the domain of interest into a finite 

number of control volumes (CVs), or cells.  The governing equations are then discretized 

on a structured grid which is created by defining each grid line in space.  As a result each 

scalar control volume has been defined by its’ grid lines, see Figure 3-1. 

Grid Line

Internal Node Location
(Center of CV)

Scalar Boundary Node
Scalar Internal Node
u, v Boundary Node, Respectively

u, v Internal Node, Respectively

Scalar CV

u Momentum CV

v Momentum CV

Control Volumes

Nodes

 
 
Figure 3-1.  Generic grid setup for staggered arrangement of variables; • denote scalar 

variables, → denote u velocities, and ↑ denote v velocities. 

The locations of scalar variables such as pressure and temperature are on each 

node, while the location of the u and v velocities are staggered with respect to the 

pressure as seen in Figure 3-1.  The location of each scalar node is determined by finding 

the geometrical center of each CV and the locations of the u and v nodes are on their 

respective grid lines.  The reason for selecting the staggered grid was to prevent 

impractical oscillations in the solution, in particular when a porous source term is added; 

this will be discussed later in Chapter 6.   

Once a computational domain has been created the discretized form of the 

governing equations can be determined.  To begin, the reader is referred to Figure 3-2 for 

an understanding of the notation used herein. The notation discussed is based on the  
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Figure 3-2.  Grid setup, with notation. 

respective control volume being examined.  For example, when looking at the u-

momentum equation the notation will be based on that CV, likewise for the v-momentum 

equation and for scalar variables.  In general, the equations herein well reference the 

control volume being examined by a superscript.    

To begin, the node of interest is labeled P; its neighbors are labeled N, S, E, and W, 

for North, South, East, and West, respectively.  For instructive purposes a uniform 

discretization will be assumed, ∆x and ∆y are the same for all CV’s.  However, this is not 

necessary, nor is it required in the code presented.  Through the methods presented by 

Ferziger [15] and Patankar [16] we arrive at the following discretized form of the 

momentum equations: 
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where the superscripts * refer to the fact that the velocities may not conserve continuity, 

and must later be corrected.  Additionally, the coefficients of equation 3.1 can be 

determined as follows.  Here they are presented for the u-momentum equations only and 

can be easily extended for use in the v-momentum equations by simply changing the 

superscripts.  For a first order upwind scheme, the coefficients of equation 3.1 are: 
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Here the symbol, , has been used to denote the greater of A and B, the S terms 

represent the surface areas of the control volumes, and ∆Ω is the volume of an individual 

CV.   The source term due to the porous media are represented in equation 3.2e as 

.  In final discretized form the viscous and inertial sources become, 
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Finally, the source term Qtotal of equation 3.1 contains the pressure and the convective 

flux resulting from the deferred correction approach,   

u
convective

u
pressure

u
total QQQ += .       (3.4) 

Where the pressure and convective flux components are, respectively, 
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The deferred correction approach is used to obtain a high order of accuracy, while 

only adding a small amount of effort compared to low order schemes.   This can be done 

by treating the high order terms explicitly and the low order terms both implicitly and 

explicitly.  Essentially, the high order terms are moved to the right hand side and lower 

order terms are placed on both sides of the equation.   The terms on the right hand side 

are determined explicitly, from the previous iteration, while the terms on the left hand 

side are found implicitly.  As the solution converges the lower order terms (which are 

found on both sides of the equation) drop out and the final solution is that of the higher 

order scheme [15].  The method used above was to treat the convective flux as 
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where the explicit terms are denoted by the superscript “m-1”, meaning values found 

from the previous iteration.  Additionally, the superscripts UDS, CDS, and 2UDS refer to 

a first order upwind difference scheme, a central difference scheme, and a second order 

upwind difference scheme respectively.  These are discussed further in Section 3.4 of this 

thesis.  Furthermore, the explicit terms can clearly be seen in , equation 3.6, and 

the implicit terms in the coefficients , where nb = N,S,E,W.  Here the solution effort 

and progress should be similar to that of an upwind difference scheme, while the final 

solution should have the accuracy of the higher order scheme.   

u
convectiveQ

u
nba

Finally the discretized equations can be solved.  Many methods are available, here 

the strongly implicit procedure (SIP) or Stone’s Method is used.  It is a form of 

incomplete lower-upper (LU) decomposition.  More detail can be found in  Ferziger [15]. 
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3.3  SIMPLE Method 

As a result of the above approximations being based on values from previous 

iterations, continuity may not be satisfied.  Thus, we must correct the resulting velocity 

and pressure fields to account for the change in mass flux.  The procedure used has been 

given the name SIMPLE, which stands for Semi-Implicit Method for Pressure-Linked 

Equations.  This procedure was originally put forth by Patankar and Spalding [17].  As a 

reference, and introduction, the reader is referred to Figure 3-3, the details of which will 

be discussed subsequently. 

Start

Solve Discretized 
Momentum Equations

Solve Pressure Correction 
Equation

Correct Pressure and 
Velcoties

Convergence

Solve Discretized Energy 
Equation

Stop

Yes

Set calculated p, u, v as 
“guessed” fields

No

Guess Velocity, Pressure, 
and Temperature Fields

Convergence

Yes

Set calculated T as 
“guessed” field

No

 
 

Figure 3-3.  Outline of SIMPLE algorithm. 

 

 



33 

To begin, an initial guess of the velocity, pressure, and consequent interface 

velocities and mass flow rates, must be made.  Once these fields have been guessed, the 

solution of the imperfect velocity fields may be obtained by the methods outlined in 

Section 3.2.  Next these fields must be corrected, to preserve continuity, as follows, 

ppp ′+= *          (3.8a) 
uuu ′+= *          (3.8b) 
vvv * ′+=          (3.8c) 

with p', u', and v' representing the corrections to their respective variables.  First the 

pressure correction must be determined. Using continuity one can arrive at equation 3.9 

to determine the pressure correction.  For brevity the derivation of this correction is not 

presented here, however, it can be found in either Ferziger [15] or Patankar [16].  The 

resulting pressure correction is, 
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The coefficients of equation 3.9 are, 
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Additionally, the following variables can be written as 
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u
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where λe is an interpolation factor defined as 

PE

Pe
e xx

xx
−
−

=λ .         (3.12) 

Furthermore, in order to determine the pressure correction the interface velocities on a 

pressure (scalar) CV, must be evaluated.  This leads to the importance of the use of a 

staggered grid.  Here, the interface velocities for a scalar CV have already been defined 

as the nodal velocities for the u and v CV’s as seen in Figure 3-1.  Alternatively, had a 

collocated grid been used, these velocities would be unknown and would have to be 

interpolated from neighboring values.  This can be achieved by applying the so called 

Rhie and Chow momentum interpolation technique, however, the steep gradient across 

the interface of an open channel and a porous zone leads to some problems.  This will be 

discussed in more detail in Chapter 6. 

 With the interface velocities known, the pressure corrections may be found by 

applying Stone’s Method to solve equation 3.9.  After the pressure corrections have been 

determined the interface velocities are updated by 

( '''
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e
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or, 
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Then the pressures are corrected by 

( )'*
PPP ppp += .         (3.15) 
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Finally, check for convergence; if the sum of the absolute values of the residuals is 

less than the designated tolerance, the solver stops.   If not, the method repeats using the 

velocity and pressure fields obtained above as the initial guess for the next iteration. 

3.4  Discretization Schemes 

For purposes of robustness, there separate discretization schemes for the convective 

terms are offered in the current code.  All three schemes can be directly implemented in 

equations 3.6 and 3.7 by selection of the proper scheme denoted by the superscripts UDS, 

CDS, and 2UDS.  Here only a brief description of the schemes is provided, for more 

information the reader is referred to Ferziger [15], Patankar [16], and Thakur [18]. 

3.4.1  First Order Upwind Scheme 

The first order upwind scheme assumes the value of φ at an interface is equal to the 

value of its upstream or upwind neighbor.  Mathematically the convective flux can be 

written as 

[ ][ ] [[ 0,0, eEePee FFF ]]−−= φφφ .       (3.16) 

The results of this scheme can be seen in equation 3.2.  The first order upwind 

scheme is the basis upon which the deferred correction approach, previously discussed, is 

based.  The first order upwind scheme is treated implicitly and the higher order schemes 

(central difference and second order upwind) are treated explicitly.  In order to properly 

apply this approach the higher order schemes must be discussed.  

3.4.2  Central Difference Scheme 

In the central differencing approach the interface values are approximated by a 

simple linear interpolation between the neighboring nodes,   
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= ).     (3.17) 
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The central difference scheme has been applied to all of the diffusion terms as 

discussed in Sections 3.2 and 3.3.  It can also be applied to the convective terms through 

the aforementioned deferred correction approach without any modification to the 

algorithm.  

3.4.3  Second Order Upwind Scheme 

The second order upwind scheme, on the other hand, is based on a linear 

extrapolation of the two upstream neighbors.  This results in  

( ){ }[ ][ ] ( ){ }[ ][ ]0,0, 21 eEEEEEeWWPee FIFIF −+−−+−= φφφφφφφ   (3.18) 

where, 
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=2          (3.19b) 

As with the CDS the 2UDS can be applied through the use of the deferred correction 

approach.   

3.5  Grid Generation 

In order to perform the procedures outline in the previous sections, a computational 

grid must first be created.  This grid may be created by a number of means; the specific 

methods are of no particular importance.  However, obtaining a proper grid with refined 

cell sizes in certain regions is crucial.  In order to obtain a proper mesh, the grid 

generation methods used within are discussed in order to familiarize the reader with the 

methods used herein. First, the dimensions of the geometry, based on the setup and 

description shown in Figure 3.4, must be entered.  Also, it should be noted that the grid 

generation described here is only applicable to the results seen in Chapter 5 of this report.  
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The grids used in the test cases seen in Chapter 4 were created specifically for those 

applications and need not be discussed here.  Additionally, is should be noted that all 

inputs are assumed to be SI, hence all lengths should be entered in meters.  

Total Radius of Pipe

Radius of Center Jet: y Sub Domain 1

Inlet 
Velocity

y Sub Domain 2:
Rtotal – RCenter Jet

xstart:
x location of the 
inlet (typically 0.0)

pstart:
x location of the beginning 
of the porous region

pend:
x location of the end 
of the porous region

xend:
x location of 
the exit

 
 

Figure 3-4.  Geometry of the problem under investigation with labels corresponding to 
input variables in the code.  

Once the dimensions have been entered correctly the user must then enter the 

number of control volumes in each sub-region.  First, the number of control volumes in 

the x-direction is needed.  Once the number of CV’s for each sub-region (entry, porous, 

and exit) has been entered, the y grid lines are generated at each x-location.  The code 

starts by determining the location of the grid lines in the porous region assuming a 

uniform discretization.  Once these grid lines have been defined the neighboring cells of 

the open channel to the porous zone (in both entry and exit regions) are defined as the 

same size as those in the porous region.  Next, expansion factors are determined based on 

the number of cells and the length of the entry and exit regions, respectively.  Then the 

grid lines are defined.  A similar procedure is performed in the y-direction.  A sample 

grid can be seen in the Figure 3-5. 
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Figure 3-5.  Sample grid displaying the important characteristics of the grid generation 

process.   

 

 

 

 



CHAPTER 4 
BENCHMARK TEST CASES / CODE VALIDATION  

As a means of verifying the code developed herein, results of several well known 

test cases are presented and compared to their respective current simulations.  Here three 

benchmark cases have been selected; each to individually validate a specific aspect of the 

code.  First, the results of the standard lid driven cavity are compared to those of Ghia 

[19].  The second test case is the well-known analytical solution for fully developed pipe 

flow. This test case was used to validate the axi-symmetric grid in addition to the solution 

of the standard energy equation.  In this particular case, both the fully developed velocity 

profile and Nusselt number are compared to their respective analytical solutions.  Finally, 

a less well-known test case, based on the analytical solution for “Forced Convection in a 

Duct Partially Filled With a Porous Material,” [20], is presented.   

4.1  Benchmark Case 1, Lid Driven Cavity 

The first benchmark case mentioned above is the popular lid driven cavity flow of 

Ghia [19].  This problem has been well documented and a number of accurate solutions 

are available within the literature.  The results used here, for comparison, are those 

provided by Ghia [19].  Before proceeding, the problem description is as follows:  flow 

inside a square cavity of length and height both 1 unit, is driven by motion of the top 

boundary of the domain as seen in Figure 4-1. 
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Figure 4-1.  Benchmark Case 1, lid driven cavity flow, problem setup. 

For this case the lid velocity was set to 1 unit/sec.  The results of Ghia [19] are 

categorized according to Reynolds number.  Here the Reynolds Number is defined as 

µ
ρ

υ
HUHU LfL

H ==Re .   The following Figures 4-2 and 4-3, offered as a measure to the 

performance of the code under development, illustrate the u and v velocity profiles 

through the geometric centers in the x and y directions, respectively, for the three 

discretization schemes, first order upwind (UDS), central difference (CDS) and a second 

order upwind scheme (2UDS).  The results on a 20 x 20 grid can be seen in Figure 4-2 

while the results for a 120 x 120 grid can be seen in Figure 4-3.  On a course grid the 

2UDS solution was best; however, as the grid was refined, both the CDS and 2UDS 

schemes provided accurate solutions.   
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Figure 4-2.  Benchmark Case 1, discretization scheme comparison on a 20 x 20 grid for 

Re = 1000. A) U-Velocity through y-geometric. B) V-Velocity through x-
geometric center. 

 



42 

-0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u-velocity (m./sec.)

y 
(m

.)

1st Order Upwind
Central Difference
2nd Order Upwind
Ghia et al. (1982)

A) 

 

0 0.2 0.4 0.6 0.8 1
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

x (m.)

v-
ve

lo
ci

ty
 (m

./s
ec

.)

1st Order Upwind
Central Difference
2nd Order Upwind
Ghia et al. (1982)

B) 

 
Figure 4-3.  Benchmark Case 1, discretization scheme comparison on a 120 x 120 grid 

for Re = 1000. A) U-Velocity through y-geometric. B) V-Velocity through x-
geometric center. 
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4.2  Benchmark Case 2, Developing Pipe Flow 

The second benchmark case is pressure driven flow in a circular duct, described 

graphically in Figure 4-4.  This problem has several well-known analytical solutions for 

particular aspects of the flow field.  For example, the fully developed profile is a well 

known function of radius and mean velocity.  However, analytical solutions to the entire 

flow field, including the developing flow regime, are not as straightforward, particularly 

when both the velocity and thermal boundary layers are developing simultaneously.  For 

this reason, the geometry was created with substantial room to allow the flow to reach its 

fully developed conditions, both hydro-dynamically and thermally.  The resulting profiles 

in the fully developed region are compared to their analytical solutions. 

 

d

d

Hydrodynamic Entrance Region Fully Developed Region

    DUinlet = Um

dT

dT

Thermal Entrance Region FD Region

Tinlet

Constant Wall Temperature, Twall > Tinlet

Ro( )ru

 
 

Figure 4-4.  Benchmark Case 2, pressure driven flow in a pipe, problem setup.  As shown 
above both the hydrodynamic and thermal boundary layers are developing 
simultaneously.  
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The analytical solution of the velocity profile for fully developed laminar pipe flow 

can be found in most fluids or convective heat transfer texts, for example Incropera [21], 

and is as follows: 

( )
⎥
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⎦
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⎡
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⎠

⎞
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⎝
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2

12
o

m R
ruru ,       (4.1) 

where um is the mean velocity of the flow, which for incompressible flows is defined by 

dAu
A

u
Am ∫=

1 .         (4.2) 

Next, the dimensionless temperature gradient at the wall, the Nusselt number, is a well 

known constant when the flow is thermally fully developed.  Therefore, it is used to 

validate the solution of the energy equation.  The Nusselt number is defined as 

f
D k

hDNu = ,         (4.3) 

where D is the diameter of pipe, kf is the thermal conductivity of the fluid, and h is the 

heat transfer coefficient defined by 

( mss TThq −=′′ ) .         (4.4) 

In equation 4.4,  is the heat flux at the wall or surface, sq ′′

oRr
fs r

Tkq
=∂

∂
=′′          (4.5) 

while Ts is the wall temperature, and Tm is the mean or bulk temperature.  For this case 

the wall temperature is known, as it is a prescribed boundary condition, however, the 

mean temperature must be computed.  Similar to the mean velocity, the mean 

temperature for incompressible flows can be determined by 
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Finally, combining equations 4.3 through 4.6 leads to the following definition of the 

Nusselt number, 

( )ms

Rr
D TT
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r
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Nu o

−

∂
∂

= = .        (4.7) 

It is important to note that the reason for deriving the above form of the Nusselt number 

is its ease of calculation in the numerical solution.  As it stands, the dimensional 

temperature gradient at the wall and mean temperature can be easily computed resulting 

in a simple computation of the Nusselt number.   

 Here the results shown are independent of the grid size in the x-direction, because 

the flow was given ample room to become fully developed.  Consequently, only the 

number of nodes in the y-direction will be noted.  The results with 22 nodes in the y-

direction can be seen in Figure 4-5, for a Reynolds number of 20.   

 As can be seen, the results are very accurate, with a maximum absolute error in 

the velocity profile of approximately 4.2E-5, or 0.002%.  Also, it should be noted that the 

Nusselt number converged to an acceptable value, Nu = 3.66, which is accurate within 2 

decimal places of the analytical solution.  
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Figure 4-5.  Benchmark Case 2, results comparison.  A) Fully developed velocity profile 

in comparison with the analytical solution and % error. B) Nusselt number vs. 
dimensionless axial distance. 
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4.3  Benchmark Case 3, Forced Convection in a Duct Partially Filled With a Porous 
Material 

The third and final test case is based on the analytical solution provided by 

Poulikakos [20].  In this thesis flow is assumed fully developed both hydraulically and 

thermally for the geometry depicted in Figure 4-6.   

r
x

s
Ro Porous Media

Open Channel

Um

 
 

Figure 4-6.  Benchmark Case3, forced convection in a duct partially filled with a porous 
material, problem setup, recreated from Poulikakos [20]. 

The results provided are velocity profiles as a function of the Darcy number,  

2
oR

KDa = ,          (4.8) 

and porous substrate thickness, s.  In this particular case the porous medium is assumed 

to be isotropic; consequently, the permeability is the same in all directions as denoted by 

the lack of subscript on K in equation 4.8.  Additionally, several plots of the Nusselt 

number, also as a function of Da and s are provided.  However, no closed form solution 

was presented, only a representative figure.    

The resulting solution of Poulikakos and Kazmierczak for the fully developed 

velocity profile is as follows. 
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Fluid Region, 0 ≤ r ≤ s 
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Porous Region, s ≤ r ≤ 1, 
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Here, u is the dimensionless velocity defined as 

*

*
2

*

dx
dPR

uu

f

o

µ

=          (4.14) 

with the * denoting the standard dimensional terms.   

Here, several discrepancies were noticed.  The results of equations 4.9 through 4.13 

do not match the results shown in Figure 2 (b) of the report.  For this reason the equations 

were scrutinized and properly written as, 
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Fluid Region, 0 ≤ r ≤ s 
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Equations 4.15 and 4.16 were not derived from first principles by the author; they were 

simply inferred from the Figures provided by Poulikakos and Kazmierczak.  The 

corrections were obtained by matching the velocity at the porous interface, r = s, of 

equations 4.9 and 4.10.  Here the addition of a y in the term ⎟
⎠
⎞⎜

⎝
⎛ − 2

1
DaBIo  to give 

⎟
⎠
⎞⎜

⎝
⎛ − 2

1
yDaBIo  provided matching velocities at the interface.  Also, the negative sign seen 

in both equations 4.15 and 4.16 was added to correct for the direction of the velocity 

profiles along the positive x-axis.    

 The results of a single test case using a second order upwind scheme, with s = 0.8, 

and 240 evenly spaced grid points in the radial direction can be seen in Figure 4-7.  As 

Figure 4-7 shows, the numerical results of the code under development are within reason. 

The maximum error of approximately 0.12% occurred at the interface between the solid 

and porous region, which lead to a local refinement of the grid at the interface.  The 

second grid investigated consisted of only 80 nodes in the  radial direction, with local 

refinement at the interface as seen in Figure 4-8.  

The results of the local refinement are excellent.  With only a third of the total grid 

points used in the previous simulation, the maximum error was decreased by slightly 

more than one half, from 0.12% to 0.056%, as seen in Figure 4-9.   Not only did the error 

decrease, but the time to run the simulation, diminished.   
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Figure 4-7.  Benchmark Case 3, comparison of velocity profiles to the analytical results 

of Poulikakos [20]. 
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Figure 4-8.  Benchmark Case 3, grid with refined region at the porous/open channel 

interface.  Here only a total of 80 nodes were used in the radial direction.   

 



51 

Finally, the results of the solution to the energy equation are presented.  Here 

Poulikakos provided no analytical solution, however, a solution was found numerically.  

The results of the above mentioned numerical solution can be seen in Figure 4-10A.  

Respectively, the results of the code under investigation can be seen in Figure 4-10B. By 

inspection, the results of the current code are within reason.  No noticeable error can be 

seen, deeming the solution correct.   
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Figure 4-9.  Benchmark Case 3, results of local grid refinement, with 80 nodes in the 
radial direction.   
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Figure 4-10.  Benchmark Case 3, validation of solution to the energy equation. A.) 

Numerical results of Poulikakos for a constant wall temperature boundary 
condition, scanned from Poulikakos [20].  B.) Results from current code under 
investigation.   

 



CHAPTER 5 
TRANSPIRATION COOLED INJECTOR 

In Chapter 1 of this thesis, a number of different injector styles was presented.  

Here a simplified version of the hollow post and sleeve, or, coaxial element is 

investigated. A single stream of fluid is injected through a large orifice, while a smaller 

amount of the same fluid is bled through the injector face.  The main focus of this report 

is the flow through the porous injector face and the respective temperatures.  The 

investigations herein are based on a drilled orifice plate acting as the porous medium.  

Future investigations should include the actual material used in the SSME, Rigimesh™.  

However, due to the large number of unknowns of the Rigimesh™, such as material 

properties and pore geometry, a set of experiments must first be performed on a porous 

medium with a well-known geometry.  This will provide the proper methods of 

determining the material constants, and should lay the foundation for future studies of the 

Rigimesh™. 

5.1  Drilled Orifice Plate – Isothermal Simulations 

In order to accurately model flow through porous materials, the correct values of 

porosity, permeability (viscous coefficient), and the Forchheimer’s coefficient (inertial 

coefficient) must be determined.  Several methods were previously discussed, they are 

applied here.  The results are compared to the corresponding experimental results, in an 

attempt to determine the appropriate method for extension to the Rigimesh™.  To begin, 

the numerical and experimental setup studied can be seen in Figure 5-1.  
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Figure 5-1.  Domain setup for both the experimental and numerical investigations of flow 

through a drilled orifice plate.   

For a known geometry the porosity can be easily computed.  Here, the 

representative elementary volume (REV) seen in Figure 5-1 yields a porosity of 

( )
1442.0

16764.0

0508.0
4

2

Volume Total
Volume Void

2

2

=
⎥⎦
⎤

⎢⎣
⎡

==

π

ε .    (5.1) 

With the porosity known, the models for permeability and the Forchheimer coefficient, 

discussed in Chapter 2, can now be applied.  The results are given in Table 5-1.  

Furthermore, the constants for Case 3 were determined from the experimental results put 

forth by Dr. Bruce F. Carroll and Ahmed F. Omar.  The permeability was extracted from 
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equation 2.3, based on the pressure drop at low flow velocities, an inlet velocity of 3.58 

m/s.  This corresponds to Re on the order of 100, which is expected to introduce some 

error because this is much greater than unity, as required by Darcy’s law.  The 

Forchheimer coefficient was then extracted from equation 2.14 using the previously 

determined permeability and the pressure drop from the largest tested flow velocity of 

25.754 m/s, corresponding to a Re of approximately 840.  A similar procedure was 

applied to determine CF for Case 4; however, it was based on the permeability from the 

capillary model.   

Table 5-1.  Values of permeability and Forchheimer’s coefficient. 

 Permeability – K (m2) Forchheimer Coefficient – CF

Case Model Value Model Value

C1 
32

2
pdε

 1.16324E-9 m2
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

e

p

D
d

5.5155.0  0.520801 

C2 
( )2

32

1180 ε

ε

−
pd

 5.87529E-12 m2
2321180

8.1
ε

 2.44905 

C3 Experimental 7.71735E-10 m2 Experimental and 
K from C3 0.160154 

C4 
32

2
pdε

 1.16324E-9 m2 Experimental and 
K from C4 0.205578 

 
In order to accurately compare the results of the four test cases, the simulations 

must be run such that there is no dependence on the grid.  To facilitate a grid independent 

solution, the number of nodes in the domain of interest was increased until the absolute 

difference between the current results and those computed on the previous grid was 

negligible.  This was achieved, with 120 x-nodes, 40 in the porous region, and 120 y-

nodes, resulting in the mesh seen in Figure 5-2. 
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Figure 5-2.  Grid setup corresponding to the geometry seen in Figure 5-1.  The grid is 

refined at the open channel / porous interface and the near wall regions. 

Subsequently, simulations were run for the four cases of Table 5-1 with fluid 

properties and boundary conditions given in Table 5-2. The results can be seen in Figures 

5-3 and 5-4.  All results seen herein are based on a second order upwind scheme, 2UDS, 

unless otherwise specified.  Pressure drops for a range of velocities, and the velocity 

profiles downstream of the orifice plate have been compared to the experimental results.  

The pressure drop is plotted against the Darcian Velocity in Figure 5-3 for three of the 

four above models; additionally the experimental results are provided.   

Table 5-2.  Fluid and porous solid properties, along with inlet velocities examined. 

Fluid and Material Properties   Inlet Velocities 

Fluid, Air @ 24.24 °C    Case Velocity (m/sec) 

Density (ρ) 1.1875 kg/m3  V1 3.58 
Dynamic Viscosity (µ) 1.8048e-5 kg/m-s  V2 7.766 
Specific Heat (cp) 1006.2 J/kg-K  V3 10.543 
Thermal Conductivity (k) 0.025913 W/m-K  V4 13.140 
    V5 16.301 
    V6 18.122 
    V7 20.0795 
    V8 23.306 
    V9 25.754 
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Figure 5-3.  Pressure drop across the orifice plate. Cases C1, C3, and C4 are labeled in 

Table 5-1.  

As can be seen in Figure 5-3, the results of Case C1 provided pressure drops much 

greater than the real values.  Additionally, by inspection of the coefficients in Table 5-1, 

the coefficients of Case C2 would provide pressure drops much greater than the actual; 

therefore, the simulations were not run for this case.   Cases C3 and C4 provided 

comparable results; however, the coefficients of Case C4 were slightly better.  

Additionally, the experimental methods used to determine the permeability and 

Fochheimer coefficient put forth in Case C3 were slightly flawed.  The Reynolds number, 

used to extract the permeability was much larger than unity, and is the reason for the 

greater discrepancy.  In the case of the Rigimesh™ the pore geometry is unknown, 
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making experimental determination of the material constants necessary.  To obtain 

accurate values of these coefficients experiments must be run at lower speeds.   

As stated above, Case C3 provided the best results and is therefore further 

scrutinized.  The greatest absolute error occurred for flow speed V2 and was 

approximately 1700 Pa, corresponding to 88%.  A similar absolute error occurred for 

flow speeds V7 and V8; however, because of the drastic pressure drop the percent error 

was in the range of 6-9%.  The attractiveness of there results lie in the fact that absolute 

error was a maximum of approximately 1700 Pa, or 0.25 psi.  In particular at the high 

flow speeds the absolute error remained about the same.  It is the belief of this author that 

further experimental investigation and the methods of Case 4 would provide better values 

of the coefficients and hence, reduced errors. 

In hopes of reducing the previously discussed error, a quadratic curve fit to the 

experimental data was applied.  From this, the values of permeability and Forchheimer’s 

coefficient (K = 5.74035E-9 m2 and CF = 0.487469) were extracted and the 

corresponding simulations were run.  The results compared to Case 3 can be seen in 

Figure 5-4.  Here error was reduced to a maximum value of 65% occurring for V2.  The 

percent error of all other flow speeds decreased as well.  Some of the discrepancy seen 

here is based on the fact that the curve fit, , did not 

intersect the y-axis at zero.  This shift was ignored when K and C

89.364363.20516.48 2 −+= xxy

F were extracted.  

Furthermore, when the curve fit was forced to intersect the y-axis at zero, negative 

coefficients resulted; therefore, was not investigated.  Regardless, by varying the values 

of permeability and Forchheimer’s coefficient, the error was reduced.  Moreover, 

Forchheimer’s constant my only be piecewise constant depending on flow regime.  To 
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better understand this further investigation is necessary.  As stated before, as more data is 

collected for investigations herein, the results should improve.   
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Figure 5-4.  Pressure drop across the orifice plate. Case C3 and results from K and CF 

based on a curve fit of the experimental data.  The curve fit resulted in the 
following values, K = 5.74035E-9 m2 and CF = 0.487469. 

In addition to the pressure drop across the plate, velocity profiles one inch 

downstream of the plate were compared to the experimental results, Figure 5-5.  Here 

much more discrepancy in the trends can be seen.  This is due largely in part to 

manufacturing defects in the physical porous plate; the hole pattern was not perfect 

(Ahmed F. Omar, personal communication, Summer 2004).  It is expected that the results 

of the Rigimesh™, which is a more natural porous material, will be a better match for the 

results of the porous models used herein.  Additionally, by the nature of the hole pattern 

in porous plate, the orifices did not extend completely to the boundary.  Essentially, a 
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small layer near the wall was not acting as a porous zone.  This may have caused some 

flow separation downstream of the plate, resulting in the errors seen here.  Finally, 

because of the high Reynolds numbers examined in this work, it is expected that the 

addition of a turbulence model would help account for the downstream velocity profile.   
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Figure 5-5.  Velocity profiles 1 inch downstream of the orifice plate, Case C4. 

5.2  Drilled Orifice Plate – Non Isothermal Simulations 

With the inertial and viscous coefficients known, attention can be turned to 

determining the proper form of the energy equation, local thermal equilibrium (LTE), or 

local thermal non-equilibrium (LTNE) between the solid and fluid phases.  Furthermore, 

if an LTNE model is appropriate, the proper value of the heat transfer coefficient must be 

determined.  Generally, when the difference between the thermal conductivities of the 

solid and fluid phases is large, the assumption of thermal equilibrium is insufficient.  

Another possibility would be to examine the Biot number, which compares the internal 
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thermal resistance of the solid to boundary layer thermal resistance.  In the investigations 

herein, the solid phase conductivity is about 5000 times that of the fluid phase, hence the 

LTNE effects are expected to be significant.  To begin, simulations corresponding to LTE 

were investigated for the domain seen in Figure 5-6.   
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kf = 0.025913 W/m-K
ks = 110 W/m-K
keff = 94.1417 W/m-K

TDownstream

P1 P2

TUpstream

 
Figure 5-6.  Non-isothermal porous plate setup.  Domain of interest and corresponding 

boundary conditions are as seen, with inlet velocities ranging from V1-V9. 

The effective conductivity was found from equation 2.28 in Chapter 2. It is also 

provided here for convenience, 

( ) fseff kkk εε +−= 1 .        (2.28) 

Using the solid and fluid phase conductivities provided in Figure 5-6, keff becomes, 

94.1417 W/m-K.  The results of this model for the same inlet velocities previously 

discussed (V1-V9), can be seen in Figures 5-7 and 5-8.  Additionally it should be noted 

that the boundary conditions seen in Figure 5-6 included an inlet fluid temperature of 500 

°K, a constant wall temperature of 273.15 °K in the porous region, and adiabatic walls in 

the open channel.   
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Here the temperature profiles on the upstream and downstream faces of the injector 

are examined.  As seen in Figure 5-7, the cooled wall boundary condition has a greater 

affect on temperature near the centerline at lower flow speeds, V1 as opposed to V9.   
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Figure 5-7.  Temperature profiles on the upstream and downstream faces of the porous 

slug.  Two test cases are shown here, V1 corresponds to an inlet velocity of 
3.58 m/sec and V9 to 25.754 m/sec. 

Similarly, Figure 5-8A shows the effect of the boundary condition on the 

temperature profiles of the downstream face for a range of flow velocities. Additionally, 

the effect of the flow speed on the temperature difference of the upstream and 

downstream face can be seen in Figure 5-8B.  At high flow speeds the temperature 

gradient in the axial direction was much greater in the near wall regions as noted by the 

large temperature difference.  However, at the centerline, the axial temperature gradient 

approaches zero as the flow speed increases.   
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Figure 5-8.  Temperature profiles, and ∆T.  A.) Temperature profiles on the downstream 

face for all inlet velocities tested, V1-V9.  B.) ∆T between the upstream and 
downstream faces for all inlet velocities tested, V1-V9. 
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Next, the effect of LTNE will be examined.  The model previously discussed in 

Chapter 2 can be seen again in Table 5-3, where the value of asf associated with that 

particular model has been determined.   

Table 5-3.  Local thermal non-equilibrium models, w. respective coefficients 

 hsf asf

Model Description Description Value (m-1)

H0 Thermal Equilibrium NA NA 

H1 
( )

p

f

d
k 6.031 RePr1.12 +  ( )

pd
ε−16  

10107.9 

H2 59.033.0 RePr064.1 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

p

f

d
k  ( )

pd

21346.20 εε−  712.9 

H3 
1

3231 10RePr2555.0
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⎥
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⎤

⎢
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⎣

⎡
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s
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p
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d ε

 
( )

pd
ε−16  10107.9 

 

Because of the known geometry of the porous plate, the actual value of asf, as 

opposed to those based on the models, can be determined analytically as follows: 

( )
( )[ ][ ] ( 1

2222
  2.1327

21

2

22

*222 −=
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=
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== m
db

d

Ldb

Ld
V
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s

sf
sf π

)π

π

π
,  (5.2) 

where b is defined in Figure 5-1 and L is the thickness of the porous region.  

Alternatively asf could be written, 

( )ε
π
−

==
1

2
2b

d
V
A

a p

s

sf
sf .        (5.3) 

Based on this value of asf Model H2 seen in Table 5-3 is the best match.  However, 

for the results discussed herein, a constant value of asf, as in equation 5-2, will be used.  

For simplicity, only the results from two flow speeds, V1 and V9, on the downstream 
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face of the injector are given here.  These can be seen in Figure 5-9.  From this, a basic 

understanding of the trends can be identified. As expected; the solid and fluid phases 

were at significantly different temperatures.  In all cases the temperature of the solid 

phases was lower than that when LTE was assumed.  Furthermore, Model H3 had the 

larger heat transfer coefficient; therefore, the fluid and solid phases were close to being in 

thermal equilibrium.  Finally, as experimental data is collected more conclusions will be 

drawn regarding the conditions for the presence of LTE.   
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Figure 5-9.  Temperature profiles for LTNE models on downstream face of the porous 

slug.  Two test cases are shown here, V1 corresponds to an inlet velocity of 
3.58 m/sec and V9 to 25.754 m/sec. 

5.3  Drilled Orifice Plate with Center Jet – Dynamic Interaction 

With the porous models now hydro-dynamically verified, a more accurate model of 

an SSME injector can be explored.  To begin Figure 5-10 shows the assembly of injectors 
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for the SSME.  The model used herein is to examine a single element of this assembly.  

Additionally, the real injector introduces both fuel and oxygen into the combustion 

chamber as separate streams that mix in the combustion chamber.  However, for the 

investigation here a single fluid, air, will be examined as seen in Figure 5-11.   

 

 
 
Figure 5-10.  Main injector assembly of the Space Shuttle Main Engine (SSME), scanned 

from Sutton [5].  Image shows baffle with five outer compartments. 

As with the isothermal porous plate and the non-isothermal porous plate, 

simulations were run for a range of flow speeds, V1 – V9.  The results given here, 

Figures 5-12 through 5-14, include the temperature profiles on the upstream and 

downstream faces, the temperature difference across the porous plate, and the percent 

mass flux through the center jet.  However, it should be noted, that the results here are 

based on a first order upwind scheme, UDS, rather than a 2UDS.  The reason for this will 

be discussed later.   

 

 



67 

R 1.036" / 2.63144 cm

R 0.20” / 0.635 cm

0.00635 m

Porous
Plate0.0263144 m

0.0254 m
0.03175 m

0.05715 m

Hot Air  
500 K°

Cooled Wall, Constant 
Temp,  273.15 K°

TDownstreamTUpstream

P1 P2

kf = 0.025913 W/m-K
ks = 110 W/m-K
keff = 94.1417 W/m-K

Note: Each individual hole seen here are 
not representative of each injector 
element.  The coaxial injector is 
represented by the larger diameter “center 
jet.”  The small holes act as pores in the 
porous face and are not to be confused 
with an injector element. 

Center Jet

 
 

Figure 5-11.  Domain setup for both the numerical investigations of flow through a 
drilled orifice plate with a dynamically influence center jet.  The drilled hole 
pattern representing the porous injector face is the same as previously 
investigated, see Figure 5-1.  

As seen in Figure 5-12, a similar trend as for the porous plate is observed.  

Likewise, Figure 5-13A and 5-13B follow the similar patterns to those previously 

discussed.  One additional comment should be made on the percent mass flow through 

the center jet, Figure 5-14.  As the flow speed increased, the percent mass flow through 

the center jet decreased.  Initially this was somewhat counter intuitive.  The percent mass 

flow through the center jet was expected to rise as the flow speed increased due to the 

additional resistance to the flow through the porous region.  However, the extra effort to  
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Figure 5-12.  Temperature profiles on the upstream and downstream injector faces.  Two 

test cases are shown here, V1 corresponds to an inlet velocity of 3.58 m/sec 
and V9 to 25.754 m/sec. 

drive the flow through the center jet at high speeds was more than that caused by the 

porous region, making the percent mass flow through the center jet decrease.    

With the results now presented, attention can be turned to the reason for using a 

UDS for this particular problem.  Initially, this problem was examined using a 2UDS; 

however, slight overshoots in the fluid temperature in the center jet region were observed, 

as seen in Figure 5-15.  The UDS, on the other hand, produced results that did not include 

the temperature overshoot.  Currently, the cause of this overshoot cannot be offered; 

however, more investigation into its origin is underway. 
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Figure 5-13.  Temperature Profiles and ∆T.  A.) Temperature profiles on the downstream 

face for all inlet velocities tested, V1-V9.  B.) ∆T between the upstream and 
downstream faces for all inlet velocities tested, V1-V9. 
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Figure 5-14.  Percent mass flow through the center jet for flow speeds, V1-V9.  
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Figure 5-15.  Results from 2UDS simulations with the center jet.  The unrealistic spike in 

temperature in the center jet region can be seen at flow speed V1. 

 



CHAPTER 6 
OBSERVATION AND RECCOMENDATIONS 

Here a number of recommendations for future studies of transpiration cooled 

injectors are proposed.  Additionally, several findings not previously discussed are 

presented.  The recommendations and lessons learned are by no means complete; 

however, several observations became apparent to this author in the course of this work 

and are presented here in hopes of furthering this research. 

6.1  Stability Observation using a Central Difference Scheme 

It is well known that the central differencing scheme can lead to physically 

impossible solutions at high Peclet Numbers.  However, in the cases examined here, the 

central difference scheme did not converge.  The added numerical dissipation of the first 

and second order upwind schemes helped to keep these schemes stable, while the lack of 

dissipation in the CDS kept the respective simulations from converging (Dr. Siddharth 

Thakur, personal communication, November 2004).   

6.2  Stability Observations on a Collocated Grid 

Previously, in Chapter 3, the differences between a staggered and a collocated grid 

were discussed.  Most importantly, a momentum interpolation technique must be 

implemented when using a collocated grid, whereas, on a staggered grid, the staggering 

of the variables provides this effect.   Prior to the use of a staggered grid, as in this thesis, 

the same simulations were run on a collocated grid, using the Rhie and Chow momentum 

interpolation technique, where interface velocity is found from 
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In equation 6.1 the overbar represents an interpolated value.  The results on a collocated 

grid included spurious oscillations in the regions just upstream and downstream of the 

porous plate, see Figure 6-1.  Refining the mesh locally near the porous interface resulted 

in decreased amplitudes of these oscillations; however, this increased the simulation time 

drastically. 
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Figure 6-1.  U-velocity at the centerline.  The oscillations seen are on a collocated grid, a 
side effect of the Rhie Chow momentum interpolation technique.   

The cause of these oscillations is inherent to the Rhie Chow momentum 

interpolation technique.  This method of momentum interpolation essentially couples the 

velocity and pressure gradient driving the flow by determining the interface velocity.  
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However, when porous source terms are included, as those used in this thesis, the flow is 

driven by both the pressure gradient the momentum source.  In order to model this on a 

collocated grid, an appropriate momentum interpolation technique to couple all three 

terms is necessary (Dr. Siddharth Thakur, personal communication, November 2004). 

6.3  Recommendations for Future Work 

The first modification or addition to the current code would be the inclusion of a 

turbulence model.  The existence and modeling of turbulent flows within porous media is 

still a subject of debate, however, of more importance here would be the turbulent flow 

downstream of the porous plate.  The main effect of a turbulent model would be the 

change in temperature on the injector face caused by the recirculation of the hot flow near 

the face especially for the cases with a center jet.  The mixing of the low speed fuel bled 

through the porous material and the high velocity center jet causes eddies and vortices to 

form, which could impart substantial differences on the temperature profile across the 

injector face. 

Subsequently, the exploration of a momentum interpolation technique for use on a 

collocated grid, capable of handling the added momentum source would be beneficial.  

Not only from an academic standpoint, but also because the added applicability of multi 

grid acceleration common to collocated grid.  This of course leads to the addition of multi 

grid capability to the current code.  This would decrease simulation time drastically, and 

allow for refined meshes to be considered as well the capability to efficiently add new 

models, such as the turbulent models previously discussed.   

 

 

 



CHAPTER 7 
CONCLUSIONS 

The use of porous models to replace ad-hoc boundary conditions in previous 

computational models for liquid propellant rocket engine (LPRE) injectors has been 

investigated.  Several methods of determining porous material constants such as 

permeability and the so-called Forchheimer coefficient were analyzed.  In cases 

examined within this thesis, the geometry of the pores was known allowing for the 

exploration of several analytical models.  The combination of experimental methods and 

analytical models resulted in coefficients that provided superlative results.  However, as 

more experimental data is collected, it is the belief of this author that the experimental 

methods will provide more accurate coefficients.  Furthermore, based on the unknown 

geometry of the pores in most materials, in particular the Rigimesh™ used in LPRE 

injectors, experimental determination is believed to be necessary.  However, the 

experimental determination of the constants can be done on a much smaller scale than 

any full-fledged experiment.  Additionally, although a maximum error of 88% was seen 

in the pressure drop across the injector, it is the belief of this author, that with further 

investigation and additional experimental data, the pressure and velocity curves can be 

fine-tuned.  Additionally, it is important to note that these large percentage errors were 

seen at low flow speeds.  Throughout the range of flow speeds examined, the absolute 

error was in the range of 400 to 1800 Pa, or roughly 0.06 to 0.26 psi, corresponding to 

approximately 2% error at the high flow speeds.   
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Of utmost importance to the development of LPRE’s are temperature profiles 

across the face of the injector assembly.   Due to time constraints, no comparison to 

experimental data was provided within this thesis; however, a number of curves based on 

local thermal equilibrium and local thermal non-equilibrium models have been presented.  

It is the hope of this author that these curves and developed code can be used to validate 

these models as experimental results are found, and aid in the development of LPRE 

injectors.   

 

 

 



 
LIST OF REFERENCES 

[1] Sutton, G. P., “History of Liquid Propellant Rocket Engines in the United States,” 
Journal of Propulsion and Power, Vol. 19, No. 6, 2003, pp. 978 – 1007. 

 
[2] Louden, P., Pratt & Whitney Space Propulsion – RL10. Retrieved November 2, 

2004, from http://www.pw.utc.com/presskit/factsheets/space_2003_status_rl10.pdf 
 
[3] Pratt & Whitney, RL10 High Resolution Image. Retrieved November 2, 2004, from 

http://www.pw.utc.com/presskit/images/rl10_high.jpg 
 
[4] Huzel, D. K., and Huang, D. H., “Modern Engineering for Design of Liquid-

Propellant Rocket Engines,” Vol. 147, Progress in Astronautics and Aeronautics, 
AIAA, Washington DC, 1992. 

 
[5] Sutton, G.P., and Biblarz, O., Rocket Propulsion Elements, 7th ed., Wiley, New 

York, 2000. 
 
[6] Huzel, D. K., and Huang, D. H., Design of Liquid Propellant Rocket Engines, 2nd 

ed., NASA SP-125, 1971.  
 
[7] Brown, C. D., Spacecraft Propulsion, AIAA Education Series, AIAA, Washington 

DC, 1996. 
 
[8] Avenall, R. J., 2004, “The Use of Metallic Foams for Heat Transfer Enhancement 

in the Cooling Jacket of a Rocket Propulsion Element,” Master’s Thesis, University 
of Florida.  

 
[9] Kaviany, M., Principles of Heat Transfer in Porous Media, 2nd Edition, Springer-

Verlag, New York, 1995.  
 
[10] Dullien, F. A. L., Porous Media Fluid Transport and Pore Structure, Academic 

Press, Inc., New York, 1979. 
 
[11] Whitaker, S., “Advances in Theory of Fluid Motion in Porous Media,” Industrial & 

Engineering Chemistry, Vol. 61, No.12, 1969, pp 14-28. 
 
[12] Guin, J. A., Kessler, D. P., Greenkorn, R. A., “The Permeability Tensor for 

Anisotropic Nonuniform Porous Media,” Chemical Engineering Science, Vol. 26, 
1971, pp 1475-1478. 

 

76 



77 

[13] Alazmi, B., and Vafai, K., “Analysis of Variants Within the Porous Media 
Transport Models,” Journal of Heat Transfer, Vol. 122, 2000, pp. 303 – 326. 

 
[14] Nield, D. A., and Bejan, A., Convection in Porous Media, 2nd Edition, Springer-

Verlag, New York, 1999 
 
[15] Ferziger, J. H., and Peric, M., Computational Methods for Fluid Dynamics, 3rd 

Edition, Springer-Verlag, Berlin, Germany, 2002. 
 
[16] Patankar, S. V., Numerical Heat Transfer and Fluid Flow, Hemisphere, 

Washington, DC, 1980.  
 
[17] Patankar, S. V., and Spalding, D. B., “A Calculation Procedure for Heat, Mass and 

Momentum Transfer in Three-Dimensional Parabolic Flows,” International 
Journal of Heat and Mass Transfer, Vol. 15, 1972, pp 1787-1805. 

 
[18] Thakur, S., Wright, J., and Shyy, W., STREAM, A Computational Fluid Dynamics 

and Heat Transfer Navier-Stokes Solver – Theory and Applications, Version 4.5.2, 
Retrieved November 2, 2004, from http://aemes.mae.ufl.edu/~cfdweb/cgi-
bin/main.cgi?index=0&altmenu=4 

 
[19] Ghia, U., Ghia, K. N., and Shin, C. T., “High-Re Solutions for Incompressible 

Flow Using the Navier-Stokes Equations and a Multigrid Method,” Journal of 
Compuational Physics, Vol. 48, 1982, pp. 387-411. 

 
[20] Poulikakos, D., and Kazmierczak, M., “Forced Convection in a Duct Partially 

Filled With a Porous Material,” Journal of Heat Transfer, Vol. 109, 1987, pp. 653-
662. 

 
[21] Incropera, F. P., and DeWitt, D. P., Fundamentals of Heat and Mass Transfer, 5th 

Edition, Wiley, New York, 2002.   
 

 



 
BIOGRAPHICAL SKETCH 

Landon Rothwell Tully was born August 29, 1980, in Abington, Pennsylvania.  He 

graduated from Cypress Lake High School, Fort Myers, Florida, in 1998.  He attended 

the University of Florida and received a Bachelor of Science, with honors, in mechanical 

engineering in the fall of 2002. Since then he has been pursuing a Master of Science 

degree in mechanical engineering while working as a graduate research assistant. 

 

 

78 


